论文部分内容阅读
触发器生成网络是深度神经网络后门攻击方法的关键算法。现有的触发器生成网络有以下两个主要问题:第一,触发器候选数据集使用静态的人工选择,未考虑候选数据集对目的神经元的敏感性,存在冗余数据。第二,触发器生成网络仅考虑如何更好地激活目的神经元,并未考虑触发器的抗检测问题。针对候选数据集冗余的问题,文章使用敏感度分析方法,选择相对目标神经元更敏感的数据集从而降低冗余数据。面对现有的触发器检测方法,改进的触发器生成网络可以在保证攻击准确度的情况下,通过设计聚类结果与随机化混淆作为综合惩罚的方法,使生成的触发器