股票价格过程飘移系数的估计

来源 :河南师范大学学报:自然科学版 | 被引量 : 0次 | 上传用户:beijingmonkey
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文讨论了股票价格过程飘移系数的估计问题,给出了估计量的性质。
其他文献
设R为可换环,本文给出判定R为PF环的有关结果,同时利用J根,考察了R上有限生成投射模的秩性质及其Ko群,一些熟知的结论成了我们的推论。
由于一个引理不真,文[1]中的一个主要定理实际上并没完全得到证明,本文采用不同的方法对该定理进行重新的证明。
本文讨论了具有再生养分流的具有质粒与不具有质粒微生物之间竞争的数学模型,假定再生养分流不具有时滞时,我们对的模型的平衡位置进行了全局分析。
本文旨在研究自反Banach空间内平均非扩张映象簇的公共不动点的存在性,以及映象为半紧情况下的公共不动点的线段平均迭代逼近。
对于在恒化器中多个种群开发竞争一个食物(营养)源数学模型的研究已见于众多的文献之中,例如([1][2][3]).它们的结论是对于种群具有一般的功能反应时竞争排斥原理成立,即只有一个种群幸存,其余
本文利用Movingplanes方法证明了半线性椭圆方程组在一定条件不存在非平凡解,从而使相应的一般区域上正解的存在问题了有更好的结果。
在第1节中讨论了σ(E_1)拓扑的性质,主要结果是证明了σ(E_1)和一个极族所导入的极拓扑相等。作为应用,在第2节中证明了自反情况下的Krein—Smulian定理。
本文得到了谱问题[1][2]:ψ_■=Uψ,U(x,t;λ)=-iλσ_3+P(x,t)+iλ~(-1)Q(x,t)的一个有意义的约化,诱导山了一族新的约化方程,并证明了Hamilton性。
在文[1]中,我们把无界闭集和稳定集的概念推广到了结构< ̄(<k)2,△>上,本文把稳定集的一些分割性质推广到了< ̄(<k)2,△>上。
本文研究了[1]中引入的有理插值算子在以第二类切比晓夫多项式的零点作为插值结点时;对函数f(x)的点态收敛性,f(x)∈ C(■,1)。给出了点态收敛阶的上界估计式,并验证了所得结