论文部分内容阅读
Ink-jet printing is a non-impact printing technology in which drops jetted from an orifice onto a designated position. This technology can digitally transport fluids containing cells precisely onto desired substrates to construct three-dimensional organs. In order to obtain the stable uniform droplets, a stream is the key point of this technology. However, there are so many factors that affect the uniform droplet stream construction process:print parameters, material parameters, control method, etc. A good understanding of the various coupled transport processes that occur during bio-ink impact and spreading on bio-structure can improve the success of print-ability. This paper aims to obtain a good linear bio-structure with ink-jet printing technology. First, a typical droplet deposition process model is constructed;including droplet dynamics impact models and droplet diffusion cap models. Second, a model of successive droplet overlap, to form linear bio-structures, is constructed. Third, the finite element method is used to simulate the droplet impact, collision, and fusion process. Finally, the main influencing factors of the continuous injection printing process, namely the time interval between consecutive droplets and the droplet contact angles, are discussed. Sodium alginate is selected as bio-ink to verify the theory, and it is found that a good linear bio-structure could be obtained if the printing parameters are controlled optimally, i.e., if the initial contact angle is set as 60 degrees and the trigger frequency is set as 150 kHz. With a proper printing speed and gel coating, a good survival rate of printed cells could be obtained.