论文部分内容阅读
摘 要 肠道菌群是个巨大、复杂的微生物生态系统,其中菌群-肠脑轴是近年研究热点。大量研究发现菌群-肠脑轴通过对免疫系统、神经传递、内分泌调节及菌群代谢物的调控,产生对精神疾病及神经退行性病变的影响。由此,深度启发了更多治疗方式和益生菌产品的发展,以预防及治疗相关疾病,具有很好的社会效益和经济学价值。本文综述了其在治疗及健康管理中的作用及商业开发价值。
关键词 菌群-肠脑轴 神经退行性疾病 干预
中图分类号:R37; R363 文献标志码:A 文章编号:1006-1533(2021)09-0076-05
Research progress on the relationship between the microbiota-gut-brain axis and diseases and the prospect of intervention on healthy life
SHEN Jing*
(SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai 201206, China)
ABSTRACT Intestinal microflora is a huge and complex microbial ecosystem, in which the microbiota-gut-brain axis has been a research hotspot in recent years. A large number of studies have showed that the microbiota-gut-brain axis has an impact on mental diseases and neurodegenerative diseases by the regulation of immune system, neurotransmission, endocrine regulation and flora metabolites. Therefore, more treatment methods and probiotics products are deeply inspired to prevent and treat the related diseases, which has good social benefits and economic value. The role of probiotics in clinical treatment and health management and its commercial development value are reviewed.
KEy WORDS microbiota-gut-brain axis; neurodegenerative disease; intervention
2000多年前,希波克拉底说“一切疾病始于肠道”,《黄帝内经》记载“心与小肠相表里”,心主神志,中外先哲不约而同地揭示了肠脑轴的概念。相关研究[1-4]夯实了这一概念:①肝性脑病常常与肠道营养不良的发生有关,对此可以采用目标微生物的抗生素治疗;②从无菌动物发现,缺乏菌群会影响大脑功能;③即使在免疫未激活的状态下,长期的轻度感染也会改变人和动物的行为;④外源性补充特定菌株能改变人和动物的行为;⑤生命早期使用抗生素会对神经系统发育产生影响。基于此,本文从菌群-肠脑轴的调控机制、与疾病的关系和干预方式等几个方面进行阐述。
1 菌群-肠脑轴的调控机制
人类肠道微生物组约有3.8×1013种微生物[5],其中包括至少1 000种已知细菌[6]。在对肠道微生物组的研究中,肠道菌群的研究进展最快,这归功于高通量筛选技术的快速发展[7]。目前的研究已经能明确菌群-肠脑轴的信息传递和影响是双向的,且肠道菌群在人体代谢、免疫、神经活动方面均是重要的参与者[8-9]。菌群-肠脑轴调控机制如图1所示[10]。
1.1 代谢调节
1.1.1 短链脂肪酸(short chain fatty acids, SCFAs)
SCFAs是肠道菌群的代谢产物之一,可以刺激肠内分泌细胞产生神经肽,从而刺激肠神经系统[11],此外,Vinolo等[12]发现SCFAs还能下调肿瘤坏死因子α(tumor necrosis factor-α,TNF-α),白细胞介素-1β(interleukin-1β,IL-1β),白细胞介素-6(interleukin-6,IL-6),等促炎因子,上调抗炎因子白细胞介素-10(IL-10),Pérez-Escuredo等[13]则发现SCFAs通过与中枢神经系统中大量表达的三羧酸转运体结合进入大脑,调节神经功能传递。这些发现都证明了SCFAs在菌群-肠脑轴中的调节作用。
1.1.2 单胺类神经递质
肠道菌群中不同的菌株能調节多种单胺类神经递质,包括5 -羟色胺(5-HT)、儿茶酚胺、γ-氨基丁酸[14-16]。Clarke等[17]发现5-HT 受肠道菌群调节,而人体95%的5-HT 由肠上皮细胞产生。在肠内,无病原体小鼠比无菌小鼠有更多的多巴胺和去甲肾上腺素,表明肠菌能提供儿茶酚胺[18]。Barrett等[19]发现肠道菌群还能产生γ-氨基丁酸,直接透过血脑屏障,调节中枢神经。
1.1.3 色氨酸-犬尿氨酸代谢
色氨酸只有少部分以5-HT 代谢,95%以犬尿氨酸通路(kynurenine pathway, KP)为主要代谢途径。近年来发现KP是神经退行性疾病和严重大脑损伤中神经元受损的重要途径[20]。还发现,正常小鼠在接受了抑郁症患者的粪菌移植(fecal microbiota transplantation, FMT)后,其色氨酸-犬尿氨酸代谢发生紊乱,行为上也有焦虑抑郁性改变[21-22]。 1.2 神经调节
迷走神经是第10颅神经,作为连接肠道和大脑最快的路径,由80%传入神经和20%传出神经构成,是以收集和传递信息为主的神经通路。迷走神经从十二指肠近端开始,一直到横结肠部分,将收集到的信号上达中枢[23]。迷走神经还能感知肠道内发生的各种机械、化学和激素等多模式的信号[24],而且不同亚群的迷走神经能感应特定的刺激,反映出特异性的潜质[25]。
1.3 内分泌调节
在嗅球切除术动物模型中,促肾上腺皮质激素释放激素(corticotropin releasing hormone, CRH)的水平上升与慢性抑郁样行为有明确联系,且会增强肠道运动,改变肠道菌群结构[26]。无菌小鼠和无特定病原体(specific pathogen free, SPF)小鼠的动物研究中发现,无菌小鼠的CRH水平比SPF小鼠高[27],而这种应激反应通过粪便重构能够得到逆转[28]。
1.4 免疫调节
肠黏膜淋巴样组织被认为是人类最大和最重要的免疫器官。研究表明[29-30],肠道菌群对淋巴系统的发育和适应性免疫系统有重要的影響。肠道菌群影响SPF小鼠的大脑代谢产物,其中10个代谢物与脑功能有关[31]。致病性肠道微生物除了微生物代谢产物外,还可通过胃肠道上皮屏障、巨噬细胞和树突状细胞激发白细胞介素-1(interleukin-1,IL-1),白细胞介素-18(interleukin-18,IL-18)等促炎细胞因子[32],这些细胞因子与多种神经精神疾病密切相关,包括焦虑、抑郁和神经性疼痛等[33-34]。可见,肠道菌群、肠黏膜免疫系统和大脑之间存在复杂的免疫调节网络。
2 菌群-肠脑轴与疾病
虽然还有很多未知,菌群-肠脑轴已表现出了双向的生物信息调控能力。近年来,阿尔兹海默病(Alzheimer disease, AD)、帕金森病(Parkinson’s disease, PD)和自闭症(autistic spectrum disorder, ASD)已被证实与肠道菌群相关。
2.1 AD
AD是中枢神经系统退行性改变的疾病,每年在全球累及约5 000万患者。淀粉样蛋白b形成的神经斑块和tau蛋白过度磷酸化导致神经纤维缠结是目前AD诊断的神经病理学标准。而菌群-肠脑轴对AD的促发作用归结于肠道营养不良,导致有益物质(如SCFAs)的减少以及有害物质(如淀粉样蛋白和氧化三甲胺)的增加。肠道营养不良的主要特征是厚壁菌与拟杆菌比值的增加,这可能导致AD早期的淀粉样蛋白前体蛋白的积累[35]。另一方面,肠道菌群的某些代谢物对Ab的积累有促进作用,比如氧化三甲胺已经被发现与AD认知功能减退有关[36]。另外,异常肠道菌群会促进全身炎症反应,进而推动AD发展,比如神经变性的发作[37-38]。
2.2 PD
PD是常见的神经退行性疾病,表现出运动性异常,包括震颤、肌肉僵硬、运动缓慢和步态异常等[39]。主要病理特征是黑质中多巴胺能神经元的丧失,伴有α-突触核蛋白的积累和路易小体的沉积[40]。研究表明[41],早在中枢系统发生病变以前,α-突触核蛋白已在肠神经系统蓄积,并伴随消化道(便秘等)症状,这在野生型α-突触核蛋白的小鼠中也得到了证实,该小鼠表现出结肠运动功能受损[42]。因而PD早期的肠道消化症状对疾病进展的认知具有警示作用,且对早期干预提供了新的可能。此外,PD患者肠道功能受损后,会增加局部炎症,降低α-突触核蛋白的清除效率,加重PD神经变性[43]。此外还发现,PD症状的严重程度(包括姿势不稳和步态异常)与一些菌株的丰度变化有相关性[44-45]。可见,探索菌群-肠脑轴对研究PD发病及疾病进展的具体机制,以及预防和治疗PD具有重大临床意义。
2.3 ASD
ASD儿童的胃肠道症状发病率比正常人群高4倍[46]。通过对ASD患者的粪便测序,发现后壁菌群丰度低,拟杆菌门高。拟杆菌属是产生SCFAs的细菌,它们的代谢产物(尤其是丙酸)可能会通过肠脑轴影响中枢神经,从而改变大脑认知和行为[47]。ASD患儿与健康儿童相比,抗炎能力菌属及消化能力菌属均降低[47-50],但脱硫弧菌却过度生长[51]。目前对于肠菌-脑肠轴与ASD之间的机制探索主要聚焦于肠道炎症假说和血清素通路异常。对于ASD的治疗尚未有很好的方法,通行的家庭认知行为疗法对父母的精力消耗和物质保障要求很高,且效果有限。因而将菌群干预作为一种靶向治疗手段,是非常有潜力的研究方向,且全球各地都有不错的研究成果发表。Wang等[52]发现益生菌和低聚果糖干预可通过调节微生物-肠脑轴,改善自闭症谱系,从而减少高血清素能状态和多巴胺代谢紊乱。
除了上述3种疾病,全球范围内还有不少菌群-脑肠轴对认知功能障碍、精神分裂、双向情感障碍等发生影响的深入研究。
3 干预
3.1 饮食
最容易实现的肠道菌群干预是饮食。因此,针对饮食结构和生活习惯对菌群-肠脑轴的改变是研究的热点。目前比较常见的方式是外源性补充益生菌产品,具体产品需要有科学、严谨的临床观察研究,才更容易成为值得普及推广的干预手段。此外,有些作为药品文号的益生菌产品也在临床使用中发现了较好的干预能力。
3.2 治疗手段
目前,全国已有几十家医院开展FMT治疗干预,因起步不同,故积累和探索的成熟度不同,但从成熟的案例和实践中发现,FMT对于自闭症、抑郁症等有不错的疗效。
4 展望
肠道微生物组除了肠菌外,还有病毒、真菌等微生物,同样对肠脑轴的双向调节起到重要作用,但需要更多的基础和临床研究了解其具体分子生物学机制。以菌群-肠脑轴为目标,寻找可以干预的肠道靶点必将继续成为研究热点,可以预见不远的未来,将不断产生鼓舞人心的新成果,以造福公众。 參考文献
[1] Collins SM. The intestinal nicrobiota in the irritable bowel syndrome[J]. Int Rev Neurobiol, 2016, 131: 247-261.
[2] Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice[J]. Gut, 2011, 60(3): 307-317.
[3] Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation[J]. Physiol Behav, 1998, 65(1): 63-68.
[4] Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiotagut-brain xis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
[5] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
[6] Rankin A, O’Donavon C, Madigan SM, et al. ‘Microbes in sport’ - the potential role of the gut microbiota in athlete health and performance[J]. Br J Sports Med, 2017, 51(9): 698-699.
[7] Zhuang L, Chen H, Zhang S, et al. Intestinal microbiota in early life and its implications on childhood health[J]. Genomics Proteomics Bioinformatics, 2019, 17(1): 13-25.
[8] Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
[9] Sun J, Wang FY, Hong GL, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress[J]. Neurosci Lett, 2016, 618: 159-166.
[10] Naveed M, Zhou QG, Xu C, et al. Gut-brain axis: a matter of concern in neuropsychiatric disorders…! [J]. Prog Neuropsychopharmacol Biol Psychiatry, 20021, 104: 110051.
[11] Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity[J]. Front Physiol, 2018, 9: 900.
[12] Vinolo MAR, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients, 2011, 3(10): 858-876.
[13] Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497.
[14] Marques TM, Patterson E, Wall R, et al. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model[J]. Benefic Microbes, 2016, 7(3): 409-420.
[15] Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Adv Exp Med Biol, 2016, 874: 25-77. [16] Strandwitz P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B): 128-133.
[17] Clarke G, Grenham S, Scully P, et al. The microbiomegut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6): 666-673.
[18] Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(11): G1288-G1295.
[19] Barrett E, Ross RP, O’Toole PW, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113(2): 411-417.
[20] Schwarcz R, Bruno JP, Muchowski PJ, et al. Kynurenines in the mammalian brain: when physiology meets pathology[J]. Nat Rev Neurosci, 2012, 13(7): 465-477.
[21] Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2017, 112(Pt B): 399-412.
[22] Zhu F, Guo RJ, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice[J]. Mol Psychiatry, 2020, 25(11): 2905-2918.
[23] Wang FB, Powley TL. Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation[J]. Cell Tissue Res, 2007, 329(2): 221-230.
[24] Berthoud HR, Blackshaw LA, Brookes SJH, et al. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract[J]. Neurogastroenterol Motil, 2004, 16 (Suppl 1): 28-33.
[25] Egerod KL, Petersen N, Timshel PN, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gutto-brain sensing mechanisms[J]. Mol Metab, 2018, 12: 62-75.
[26] Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression[J]. Neurogastroenterol Motil, 2013, 25(9): 733-740; e574-e575.
[27] Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats[J]. Psychoneuroendocrinology, 2014, 42: 207-217.
[28] Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. J Physiol, 2004, 558(Pt 1): 263-275. [29] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086): 1268-1273.
[30] Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493.
[31] Matsumoto M, Kibe, R, Ooga T, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study[J]. Front Syst Neurosci, 2013, 7: 9.
[32] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241.
[33] Liu S, Mi WL, Li Q, et al. Spinal IL-33/ST2 signaling contributes to neuropathic pain via neuronal CaMKII–CREB and astroglial JAK2-STAT3 cascades in mice[J]. Anesthesiology, 2015, 123(5): 1154-1169.
[34] Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gutmicrobiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clin Ther, 2015, 37(5): 984-995.
[35] Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model[J]. J Alzheimers Dis, 2017, 56(2): 775-788.
[36] Gao Q, Wang Y, Wang X, et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease[J]. Aging (Albany NY), 2019, 11(19): 8642-8663.
[37] Holmes C, Cunningham C, Zotova E, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease[J]. Neurology, 2011, 77(3): 212-218.
[38] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2000, 73(10): 768-774.
[39] Zlomuzica A, Dere D, Binder S, et al. Neuronal histamine and cognitive symptoms in Alzheimer’s disease[J]. Neuropharmacology, 2016, 106: 135-145.
[40] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
[41] Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome[J]. Exp Gerontol, 2019, 115: 122-131.
[42] Rezaei Asl Z, Sepehri G, Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease[J]. Behav Brain Res, 2019, 376: 112183. [43] McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins[J]. Sci Transl Med, 2011, 3(106): 106ra106.
[44] Míguez B, Gómez B, Parajó JC, et al. Potential of Fructooligosaccharides and xylooligosaccharides as substrates to counteract the undesirable effects of several antibiotics on elder fecal microbiota: a first in vitro approach[J]. J Agric Food Chem, 2018, 66(36): 9426-9437.
[45] Schokker D, Fledderus J, Jansen R, et al. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development[J]. J Anim Sci, 2018, 96(6): 2139-2153.
[46] Marler S, Ferguson BJ, Lee EB, et al. Association of rigidcompulsive behavior with functional constipation in autism spectrum disorder[J]. J Autism Dev Disord, 2017, 47(6): 1673-1681.
[47] Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases[J]. Am J Med Genet B Neuropsychiatr Genet, 2017, 174(6): 651-660.
[48] Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration[J]. J Physiol, 2017, 595(2): 489-503.
[49] Wakefield AJ, Puleston JM, Montgomery SM, et al. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands[J]. Aliment Pharmacol Ther, 2002, 16(4): 663-674.
[50] Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38: 1-12.
[51] Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction[J]. Science, 2018, 361(6408): eaat5236.
[52] Wang Y, Li N, Yang JJ, et al. Probiotics and fructooligosaccharide intervention modulate the microbiotagut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder[J]. Pharmacol Res, 2020, 157: 104784.
关键词 菌群-肠脑轴 神经退行性疾病 干预
中图分类号:R37; R363 文献标志码:A 文章编号:1006-1533(2021)09-0076-05
Research progress on the relationship between the microbiota-gut-brain axis and diseases and the prospect of intervention on healthy life
SHEN Jing*
(SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai 201206, China)
ABSTRACT Intestinal microflora is a huge and complex microbial ecosystem, in which the microbiota-gut-brain axis has been a research hotspot in recent years. A large number of studies have showed that the microbiota-gut-brain axis has an impact on mental diseases and neurodegenerative diseases by the regulation of immune system, neurotransmission, endocrine regulation and flora metabolites. Therefore, more treatment methods and probiotics products are deeply inspired to prevent and treat the related diseases, which has good social benefits and economic value. The role of probiotics in clinical treatment and health management and its commercial development value are reviewed.
KEy WORDS microbiota-gut-brain axis; neurodegenerative disease; intervention
2000多年前,希波克拉底说“一切疾病始于肠道”,《黄帝内经》记载“心与小肠相表里”,心主神志,中外先哲不约而同地揭示了肠脑轴的概念。相关研究[1-4]夯实了这一概念:①肝性脑病常常与肠道营养不良的发生有关,对此可以采用目标微生物的抗生素治疗;②从无菌动物发现,缺乏菌群会影响大脑功能;③即使在免疫未激活的状态下,长期的轻度感染也会改变人和动物的行为;④外源性补充特定菌株能改变人和动物的行为;⑤生命早期使用抗生素会对神经系统发育产生影响。基于此,本文从菌群-肠脑轴的调控机制、与疾病的关系和干预方式等几个方面进行阐述。
1 菌群-肠脑轴的调控机制
人类肠道微生物组约有3.8×1013种微生物[5],其中包括至少1 000种已知细菌[6]。在对肠道微生物组的研究中,肠道菌群的研究进展最快,这归功于高通量筛选技术的快速发展[7]。目前的研究已经能明确菌群-肠脑轴的信息传递和影响是双向的,且肠道菌群在人体代谢、免疫、神经活动方面均是重要的参与者[8-9]。菌群-肠脑轴调控机制如图1所示[10]。
1.1 代谢调节
1.1.1 短链脂肪酸(short chain fatty acids, SCFAs)
SCFAs是肠道菌群的代谢产物之一,可以刺激肠内分泌细胞产生神经肽,从而刺激肠神经系统[11],此外,Vinolo等[12]发现SCFAs还能下调肿瘤坏死因子α(tumor necrosis factor-α,TNF-α),白细胞介素-1β(interleukin-1β,IL-1β),白细胞介素-6(interleukin-6,IL-6),等促炎因子,上调抗炎因子白细胞介素-10(IL-10),Pérez-Escuredo等[13]则发现SCFAs通过与中枢神经系统中大量表达的三羧酸转运体结合进入大脑,调节神经功能传递。这些发现都证明了SCFAs在菌群-肠脑轴中的调节作用。
1.1.2 单胺类神经递质
肠道菌群中不同的菌株能調节多种单胺类神经递质,包括5 -羟色胺(5-HT)、儿茶酚胺、γ-氨基丁酸[14-16]。Clarke等[17]发现5-HT 受肠道菌群调节,而人体95%的5-HT 由肠上皮细胞产生。在肠内,无病原体小鼠比无菌小鼠有更多的多巴胺和去甲肾上腺素,表明肠菌能提供儿茶酚胺[18]。Barrett等[19]发现肠道菌群还能产生γ-氨基丁酸,直接透过血脑屏障,调节中枢神经。
1.1.3 色氨酸-犬尿氨酸代谢
色氨酸只有少部分以5-HT 代谢,95%以犬尿氨酸通路(kynurenine pathway, KP)为主要代谢途径。近年来发现KP是神经退行性疾病和严重大脑损伤中神经元受损的重要途径[20]。还发现,正常小鼠在接受了抑郁症患者的粪菌移植(fecal microbiota transplantation, FMT)后,其色氨酸-犬尿氨酸代谢发生紊乱,行为上也有焦虑抑郁性改变[21-22]。 1.2 神经调节
迷走神经是第10颅神经,作为连接肠道和大脑最快的路径,由80%传入神经和20%传出神经构成,是以收集和传递信息为主的神经通路。迷走神经从十二指肠近端开始,一直到横结肠部分,将收集到的信号上达中枢[23]。迷走神经还能感知肠道内发生的各种机械、化学和激素等多模式的信号[24],而且不同亚群的迷走神经能感应特定的刺激,反映出特异性的潜质[25]。
1.3 内分泌调节
在嗅球切除术动物模型中,促肾上腺皮质激素释放激素(corticotropin releasing hormone, CRH)的水平上升与慢性抑郁样行为有明确联系,且会增强肠道运动,改变肠道菌群结构[26]。无菌小鼠和无特定病原体(specific pathogen free, SPF)小鼠的动物研究中发现,无菌小鼠的CRH水平比SPF小鼠高[27],而这种应激反应通过粪便重构能够得到逆转[28]。
1.4 免疫调节
肠黏膜淋巴样组织被认为是人类最大和最重要的免疫器官。研究表明[29-30],肠道菌群对淋巴系统的发育和适应性免疫系统有重要的影響。肠道菌群影响SPF小鼠的大脑代谢产物,其中10个代谢物与脑功能有关[31]。致病性肠道微生物除了微生物代谢产物外,还可通过胃肠道上皮屏障、巨噬细胞和树突状细胞激发白细胞介素-1(interleukin-1,IL-1),白细胞介素-18(interleukin-18,IL-18)等促炎细胞因子[32],这些细胞因子与多种神经精神疾病密切相关,包括焦虑、抑郁和神经性疼痛等[33-34]。可见,肠道菌群、肠黏膜免疫系统和大脑之间存在复杂的免疫调节网络。
2 菌群-肠脑轴与疾病
虽然还有很多未知,菌群-肠脑轴已表现出了双向的生物信息调控能力。近年来,阿尔兹海默病(Alzheimer disease, AD)、帕金森病(Parkinson’s disease, PD)和自闭症(autistic spectrum disorder, ASD)已被证实与肠道菌群相关。
2.1 AD
AD是中枢神经系统退行性改变的疾病,每年在全球累及约5 000万患者。淀粉样蛋白b形成的神经斑块和tau蛋白过度磷酸化导致神经纤维缠结是目前AD诊断的神经病理学标准。而菌群-肠脑轴对AD的促发作用归结于肠道营养不良,导致有益物质(如SCFAs)的减少以及有害物质(如淀粉样蛋白和氧化三甲胺)的增加。肠道营养不良的主要特征是厚壁菌与拟杆菌比值的增加,这可能导致AD早期的淀粉样蛋白前体蛋白的积累[35]。另一方面,肠道菌群的某些代谢物对Ab的积累有促进作用,比如氧化三甲胺已经被发现与AD认知功能减退有关[36]。另外,异常肠道菌群会促进全身炎症反应,进而推动AD发展,比如神经变性的发作[37-38]。
2.2 PD
PD是常见的神经退行性疾病,表现出运动性异常,包括震颤、肌肉僵硬、运动缓慢和步态异常等[39]。主要病理特征是黑质中多巴胺能神经元的丧失,伴有α-突触核蛋白的积累和路易小体的沉积[40]。研究表明[41],早在中枢系统发生病变以前,α-突触核蛋白已在肠神经系统蓄积,并伴随消化道(便秘等)症状,这在野生型α-突触核蛋白的小鼠中也得到了证实,该小鼠表现出结肠运动功能受损[42]。因而PD早期的肠道消化症状对疾病进展的认知具有警示作用,且对早期干预提供了新的可能。此外,PD患者肠道功能受损后,会增加局部炎症,降低α-突触核蛋白的清除效率,加重PD神经变性[43]。此外还发现,PD症状的严重程度(包括姿势不稳和步态异常)与一些菌株的丰度变化有相关性[44-45]。可见,探索菌群-肠脑轴对研究PD发病及疾病进展的具体机制,以及预防和治疗PD具有重大临床意义。
2.3 ASD
ASD儿童的胃肠道症状发病率比正常人群高4倍[46]。通过对ASD患者的粪便测序,发现后壁菌群丰度低,拟杆菌门高。拟杆菌属是产生SCFAs的细菌,它们的代谢产物(尤其是丙酸)可能会通过肠脑轴影响中枢神经,从而改变大脑认知和行为[47]。ASD患儿与健康儿童相比,抗炎能力菌属及消化能力菌属均降低[47-50],但脱硫弧菌却过度生长[51]。目前对于肠菌-脑肠轴与ASD之间的机制探索主要聚焦于肠道炎症假说和血清素通路异常。对于ASD的治疗尚未有很好的方法,通行的家庭认知行为疗法对父母的精力消耗和物质保障要求很高,且效果有限。因而将菌群干预作为一种靶向治疗手段,是非常有潜力的研究方向,且全球各地都有不错的研究成果发表。Wang等[52]发现益生菌和低聚果糖干预可通过调节微生物-肠脑轴,改善自闭症谱系,从而减少高血清素能状态和多巴胺代谢紊乱。
除了上述3种疾病,全球范围内还有不少菌群-脑肠轴对认知功能障碍、精神分裂、双向情感障碍等发生影响的深入研究。
3 干预
3.1 饮食
最容易实现的肠道菌群干预是饮食。因此,针对饮食结构和生活习惯对菌群-肠脑轴的改变是研究的热点。目前比较常见的方式是外源性补充益生菌产品,具体产品需要有科学、严谨的临床观察研究,才更容易成为值得普及推广的干预手段。此外,有些作为药品文号的益生菌产品也在临床使用中发现了较好的干预能力。
3.2 治疗手段
目前,全国已有几十家医院开展FMT治疗干预,因起步不同,故积累和探索的成熟度不同,但从成熟的案例和实践中发现,FMT对于自闭症、抑郁症等有不错的疗效。
4 展望
肠道微生物组除了肠菌外,还有病毒、真菌等微生物,同样对肠脑轴的双向调节起到重要作用,但需要更多的基础和临床研究了解其具体分子生物学机制。以菌群-肠脑轴为目标,寻找可以干预的肠道靶点必将继续成为研究热点,可以预见不远的未来,将不断产生鼓舞人心的新成果,以造福公众。 參考文献
[1] Collins SM. The intestinal nicrobiota in the irritable bowel syndrome[J]. Int Rev Neurobiol, 2016, 131: 247-261.
[2] Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice[J]. Gut, 2011, 60(3): 307-317.
[3] Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation[J]. Physiol Behav, 1998, 65(1): 63-68.
[4] Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiotagut-brain xis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
[5] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
[6] Rankin A, O’Donavon C, Madigan SM, et al. ‘Microbes in sport’ - the potential role of the gut microbiota in athlete health and performance[J]. Br J Sports Med, 2017, 51(9): 698-699.
[7] Zhuang L, Chen H, Zhang S, et al. Intestinal microbiota in early life and its implications on childhood health[J]. Genomics Proteomics Bioinformatics, 2019, 17(1): 13-25.
[8] Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
[9] Sun J, Wang FY, Hong GL, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress[J]. Neurosci Lett, 2016, 618: 159-166.
[10] Naveed M, Zhou QG, Xu C, et al. Gut-brain axis: a matter of concern in neuropsychiatric disorders…! [J]. Prog Neuropsychopharmacol Biol Psychiatry, 20021, 104: 110051.
[11] Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity[J]. Front Physiol, 2018, 9: 900.
[12] Vinolo MAR, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients, 2011, 3(10): 858-876.
[13] Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497.
[14] Marques TM, Patterson E, Wall R, et al. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model[J]. Benefic Microbes, 2016, 7(3): 409-420.
[15] Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Adv Exp Med Biol, 2016, 874: 25-77. [16] Strandwitz P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B): 128-133.
[17] Clarke G, Grenham S, Scully P, et al. The microbiomegut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6): 666-673.
[18] Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(11): G1288-G1295.
[19] Barrett E, Ross RP, O’Toole PW, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113(2): 411-417.
[20] Schwarcz R, Bruno JP, Muchowski PJ, et al. Kynurenines in the mammalian brain: when physiology meets pathology[J]. Nat Rev Neurosci, 2012, 13(7): 465-477.
[21] Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2017, 112(Pt B): 399-412.
[22] Zhu F, Guo RJ, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice[J]. Mol Psychiatry, 2020, 25(11): 2905-2918.
[23] Wang FB, Powley TL. Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation[J]. Cell Tissue Res, 2007, 329(2): 221-230.
[24] Berthoud HR, Blackshaw LA, Brookes SJH, et al. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract[J]. Neurogastroenterol Motil, 2004, 16 (Suppl 1): 28-33.
[25] Egerod KL, Petersen N, Timshel PN, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gutto-brain sensing mechanisms[J]. Mol Metab, 2018, 12: 62-75.
[26] Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression[J]. Neurogastroenterol Motil, 2013, 25(9): 733-740; e574-e575.
[27] Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats[J]. Psychoneuroendocrinology, 2014, 42: 207-217.
[28] Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. J Physiol, 2004, 558(Pt 1): 263-275. [29] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086): 1268-1273.
[30] Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493.
[31] Matsumoto M, Kibe, R, Ooga T, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study[J]. Front Syst Neurosci, 2013, 7: 9.
[32] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241.
[33] Liu S, Mi WL, Li Q, et al. Spinal IL-33/ST2 signaling contributes to neuropathic pain via neuronal CaMKII–CREB and astroglial JAK2-STAT3 cascades in mice[J]. Anesthesiology, 2015, 123(5): 1154-1169.
[34] Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gutmicrobiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clin Ther, 2015, 37(5): 984-995.
[35] Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model[J]. J Alzheimers Dis, 2017, 56(2): 775-788.
[36] Gao Q, Wang Y, Wang X, et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimer’s disease[J]. Aging (Albany NY), 2019, 11(19): 8642-8663.
[37] Holmes C, Cunningham C, Zotova E, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease[J]. Neurology, 2011, 77(3): 212-218.
[38] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2000, 73(10): 768-774.
[39] Zlomuzica A, Dere D, Binder S, et al. Neuronal histamine and cognitive symptoms in Alzheimer’s disease[J]. Neuropharmacology, 2016, 106: 135-145.
[40] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
[41] Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome[J]. Exp Gerontol, 2019, 115: 122-131.
[42] Rezaei Asl Z, Sepehri G, Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease[J]. Behav Brain Res, 2019, 376: 112183. [43] McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins[J]. Sci Transl Med, 2011, 3(106): 106ra106.
[44] Míguez B, Gómez B, Parajó JC, et al. Potential of Fructooligosaccharides and xylooligosaccharides as substrates to counteract the undesirable effects of several antibiotics on elder fecal microbiota: a first in vitro approach[J]. J Agric Food Chem, 2018, 66(36): 9426-9437.
[45] Schokker D, Fledderus J, Jansen R, et al. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development[J]. J Anim Sci, 2018, 96(6): 2139-2153.
[46] Marler S, Ferguson BJ, Lee EB, et al. Association of rigidcompulsive behavior with functional constipation in autism spectrum disorder[J]. J Autism Dev Disord, 2017, 47(6): 1673-1681.
[47] Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases[J]. Am J Med Genet B Neuropsychiatr Genet, 2017, 174(6): 651-660.
[48] Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration[J]. J Physiol, 2017, 595(2): 489-503.
[49] Wakefield AJ, Puleston JM, Montgomery SM, et al. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands[J]. Aliment Pharmacol Ther, 2002, 16(4): 663-674.
[50] Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38: 1-12.
[51] Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction[J]. Science, 2018, 361(6408): eaat5236.
[52] Wang Y, Li N, Yang JJ, et al. Probiotics and fructooligosaccharide intervention modulate the microbiotagut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder[J]. Pharmacol Res, 2020, 157: 104784.