论文部分内容阅读
为了提高粒子群优化(PSO)算法的优化效率,结合量子理论提出一种基于Bloch球面坐标的量子粒子群优化算法。在Bloch球面坐标下,粒子自动更新旋转角大小和粒子位置,不需将旋转角以查询表的形式设定(或设定为区间上的固定值),弥补了Bloch球面坐标下量子进化算法和量子遗传算法的不足,算法更具有普遍性;用量子Hadamard门实现粒子的变异,增强了种群的多样性,促使粒子跳出局部极值点。对典型函数优化问题的仿真结果表明,提出的算法稳定性强,精度高,收敛速度快,具有一定的实用价值。