论文部分内容阅读
互联网与实体经济融合发展背景下,网络优惠券往往承担了提升用户体验、促进再次消费的重要功能。构建梯度提升树、随机森林等模型,预测网络优惠券使用行为;并对影响因素的重要性进行排序。结果表明:梯度提升树算法的五折交叉验证平均测试精度、曲线下面积值分别为 0. 804 与 0. 886,高于随机森林与单棵决策树算法。优惠券折扣率对于用户使用优惠券行为起着决定性影响,用户经常活动的地点离该商户最近门店的距离、领取优惠券时间等特征对用户使用优惠券行为具有重要影响。