论文部分内容阅读
提出一种Laguerre(拉盖尔)模拟复合正交神经网络并应用于电厂过热汽温的直接自适应控制。模拟神经网络被作为直接自适应控制器,这种单隐层正变神经网络是基于Laguerre复合正交多项式函数,并具有在线连续学习的简单算法,且学习算法与被控对象模型无关。由于采用3层网络结构,输入层与隐层之间不用权值调整,在学习算法中只要在输出层与隐层之间寻找最佳权值,因此网络学习速度较快。网络隐层节点(处理元)是Laguerre多项式展开项,展开项的多少决定着网络的学习速度和精度。通过对具有严重参数不确定性、扰动以及大迟延