论文部分内容阅读
摘要:在半固态模锻过程中,经常会出现液相偏析现象,使零件出现“弱点”或“弱区”,这些“弱点”或“弱区”通常又是潜在的裂纹源和服役条件下失效的起因。为了分析研究半固态模锻液相偏析的影响因素,应用DEFORM-3D软件对7075铝合金半固态模锻充型过程进行了模拟,研究了成形速度对7075铝合金杯形件充型过程的影响规律。在模拟的基础上,利用压力机及杯形实验模具,进行了半固态7075铝合金流变模锻成形,研究了成形速度对7075铝合金杯形件半固态模锻组织均匀性的影响。模拟和实验结果表明:成形速度越高,充型越不平稳;在压头温度400 ℃、成形比压50 MPa、合金温度628 ℃的条件下,随着成形速度的增加,杯形件的液相偏析度增加,组织越不均匀,当成形速度为5 mm/s时,杯形件的液相偏析度高达18.2%。
关键词:铸造工艺与设备;半固态;流变模锻;7075铝合金;组织均匀性;液相偏析度
中图分类号:TG146.4 文献标志码:A
Abstract:Liquid phase segregation frequently occurs in the process of semi solid die forging, which makes the parts appear "weak point" or "weak region", and usually, the "weak point" or "weak area" is the reason of crack and service condition failure. In order to analyze the influence factors of the liquid phase segregation of the semi solid die forging, DEFORM-3D is used for the numerical simulation of semi-solid die forging forming process of 7075 aluminum alloy, to study the influence rule of forming velocity on the forming process of cup part. Based on the simulation results, the rheological die forging forming of 7075 aluminum alloythe part is conducted to research the influence of forming velocity on the uniformity of microstructure by means of press machine and cup mould. The simulation and experimental results show that as the filling velocity is faster, the forming process is more unstable; under the condition of head temperature of 400 ℃, the forming pressure of 50 MPa, and the alloy temperature 628 ℃, as the forming velocity increases, the liquid phase segregation degree of cup part increases, and the microstructure is far from uniformity. The segregation degree is up to 18.2% as the forming velocity is 5 mm/s.
Keywords:foundry technology and equipment; semisolid; rheological die forging; 7075 aluminum alloy; uniformity of microstructure; liquid phase segregation degree
随着中国交通运输业及武器装备业的现代化、高速化,零件轻量化要求的日趋强烈,特别是飞机、航天器、高速列车、货运车、汽车、火炮、坦克以及机械设备等重要受力部件和结构件等,大量使用铝合金锻件和模锻件来代替原来的钢结构件。普通的铝合金生产方法以及传统的模锻技术难以满足关键零部件的制造需求和使用性能,由于这种需求的客观存在,使得半固态模锻技术得到人们广泛关注[1-7]。然而,半固态合金是含有非枝晶固相的固液混合物,在外力作用下成形时,液相比固相更容易流动因而造成液相偏析。研究表明,许多合金在半固态锻造中出现固液分离导致液相偏析,如A356,A357,2024,6061,6082,7050,7075,2A50,A201,AM60,ADC12等[8-21]。但到目前为止,这个问题还没有彻底解决。本文采用计算机模拟和实验相结合的方法,研究了成形速度对7075铝合金杯形件半固态模锻组织均匀性的影响,定量描述了成形速度与液相偏析之间的关系。
1 热分析模型的建立
1.1 建立模型
本实验中采用的杯形件模型包括压头、垫块、套筒和坯料,Pro/E中实体建模如图1所示。
装配后模具的三维立体示意图如图2所示;图3为部分模具模型网格划分图。
1.2 材料参数设置
实验所用材料为7075合金,其主要成分的质量分数分别为Zn:5.1%~6.1 %;Mg:2.1%~2.9%;Cu: 1.2%~2.0 %;Si:0.40%, Fe:0.50%;Mn:0.30%;Cr:0.18%~0.28%;Ti:0.20%;余量为Al。材料的热物性参数见表1。 1.3 其他参数设置
在模拟运算完成后应用DEF0RM软件中的后处理模块进行分析,设置压头为活动件,其余模具及坯料速度设为零,压头下压速度方向为-Z(垂直向下),压头的下压速度为时间函数。定义本实验中所有模具和坯料间的接触类型全部为黏着,在接触的主次关系中定义坯料均为次要,摩擦类型为剪切摩擦,设定值为0.4。界面换热系数中压头和坯料的换热系数为11,其余为5。
1.4 模拟工艺方案
采用3组不同成形速度进行模拟,模具下模温度设为350 ℃,成形比压为50 MPa,模拟方案见表2。
2 充型过程模拟结果及分析
图4表示的是成形速度对充型过程的影响。
从图4可以看出,当其他工艺参数相同,随着充型速度的增大,7075铝合金半固态合金充型过程变得不平稳。这是由于随着充型速度的提高,半固态合金之间的相对运动变得较为剧烈,导致合金的充型过程不平稳。
3 半固态模锻成形
为了验证模拟结果,进行了半固态模锻实验。实验模具如图5所示。将预先定量切割好的圆柱形试块放入下模中,加热到一定温度后,采用手工机械搅拌的方式制备半固态合金,待到预定温度后,进行半固态模锻成形。成形工艺方案同表1,成形的杯形件断面如图6所示。图6中的c)是由于涂料涂覆不到位,造成杯形件脱模力过大,杯形件由图5中下模具中取出时,由于锤击过猛,导致从下部断裂。
通过对图6杯形件断面观察及金相组织分析,发现高温液相形成的共晶在杯形件的上部,中部、下部不存在高温液相形成的共晶。图6中杯形件断面上部用线圈定的区域为高温液相形成的共晶区域。从图6可以看出,不同成形速度下成形的杯形件,高温液相形成的共晶区域大小也不同,随着成形速度的提高,杯形件上部共晶区域面积逐渐加大。图6 c)的微观组织如图7所示。
为了定量描述半固态合金温度与高温液相形成的共晶区域的关系,引入了液相偏析度的概念:高温液相形成的共晶区域所占面积A液与整个杯形断面总面积A总的比例为液相偏析度,即
液相偏析度=[SX(]A液A总[SX)]×100%。
经分析计算,不同成形速度下的液相偏析度如图8所示。
由图8可以看出,随着成形速度的提高,液相偏析度是逐渐增加的。这是因为随着成形速度的增加,液相的流动速度相对于固相的流动速度也会增加,导致高温下液相明显优于固相流动,导致最后充填部位(杯形件的上部)高温液相形成的共晶区域偏多,充型速度大的杯形件杯口处的共晶区域增多,造成了试件上部和其他部位的组织不均匀。因此,严格控制半固态合金成形速度对成形零件的组织均匀性是非常有利的。另外,成形速度过高,也会造成合金在充型的过程中容易产生紊流、卷气,使零件产生气孔。
4 结 论
1)利用DEFORM-3D软件,模拟了成形速度对7075铝合金杯形件充型过程的影响规律。模拟结果表明:成形速度越高,充型越不平稳。
2)在模拟的基础上,进行了半固态模锻成形,模锻工艺参数在压头预热温度400 ℃、成形比压50 MPa、合金温度628 ℃时,随着成形速度的增加,杯形件的液相偏析度增加,组织越不均匀;当成形速度为5 mm/s时,杯形件的液相偏析度高达18.2%。
参考文献/References:
[1] SEO P K,KIM D U,KANG C G. The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process[J].Mater Sci Eng A,2007, 445/446:20-30.
[2] 陈刚.2A50铝合金半固态模锻成形的组织性能不均匀性研究[D].哈尔滨:哈尔滨工业大学,2009.
CHEN Gang. Research on Inhomogeneity of Microstructure and Mechanical Properties for 2A50 Aluminum Alloy Prepared by Thixoforging[D]. Harbin: Harbin Institute of Technology, 2009.
[3] DU Z M,CHEN G,CHENG Y S, et al. Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state[J]. Transactions of Nonferrous Metals Society of China,2011(10):2285-2293.
[4] 谭建波,杨帅,李祎超.半固态6061合金流变铸-锻成形及组织均匀性[J].特种铸造及有色合金, 2015,35(6): 561-565.
TAN Jianbo, YANG Shuai, LI Yichao. Research on forming process and microstructure uniformity of semi-solid rheological casting-forging 6061 alloy[J]. Special Casting & Nonferrous Alloys, 2015,35(6): 561-565.
[5] 钱福梅.2024铝合金半固态触变模锻过程研究及数值模拟[D].哈尔滨:哈尔滨工业大学, 2011. QIAN Fumei. Research on the Semi-solid Thixoforging Process and Numerical Simulation of Aluminum Alloy 2024[D]. Harbin: Harbin Institute of Technology, 2011.
[6] 刘静安. 铝合金锻压生产现状及锻件应用前景分析[J]. 轻合金加工技术, 2005,33(6):1-5.
LIU Jingan. Application foreground of forgings and states of aluminium alloy forging production[J]. Light Alloy Fabrication Technology, 2005,33(6):1-5.
[7] 王顺成, 戚文军,郑开宏.半固态模锻ZL101铝合金车轮的组织与力学性能[J]. 材料热处理学报, 2013,34(5):116-120.
WANG Shuncheng, QI Wenjun, ZHENG Kaihong. Microstructure and mechanical properties of semisolid forged ZL101 aluminum alloy wheel[J]. Transactions of Materials and Heat Treatment, 2013,34(5):116-120.
[8] MLLER H, CURLE U A, MASUKU E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201[J].Transactions of Nonferrous Metals Society of China,2010,20(3):847-851.
[9] 肖文华.半固态5083铝合金压缩行为及触变轧制研究[D].广州:华南理工大学,2011.
XIAO Wenhua. Study on Compression Behavior and Thixo-rolling of Semi-solid 5083 Aluminum Alloy[D]. Guangzhou: South China University of Technology,2011.
[10]闫冬, 纪兴华, 陈文, 等.近液相线锻造及部分重熔制备AM60镁合金半固态坯及触变成形研究[J].铸造,2014,63(5):429-431.
YAN Dong, JI Xinghua, CHEN Wen, et al. Study on thixoforging of AM60 magnesium alloy semi-solid billet prepared by near-liquidus forging and partial remelting[J]. Foundry,2014,63(5):429-431.
[11]谭建波,杨帅,李祎超.工艺参数对半固态流变铸-锻6061合金成形性的影响[J]. 河北科技大学学报, 2016,37(1):65-69.
TAN Jianbo, YANG Shuai, LI Yichao. Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy[J]. Journal of Hebei University of Science and Technology, 2016,37(1):65-69.
[12]KANG C G, LEE S M. The effect of solid fraction and indirect forging pressure on mechanical properties of wrought aluminum alloy fabricated by electromagnetic stirring[J]. International Journal of Advanced Manufacturing Technology, 2009,42:73-82.
[13]谭建波,王子超,王东旭.杯形件半固态模锻充型过程模拟及实验验证[J].河北科技大学学报,2015, 36(3):313-318.
TAN Jianbo, WANG Zichao, WANG Dongxu.The simulation and verification of the filling process of cup shell semi-solid die forging[J].Journal of Hebei University of Science and Technology,2015, 36(3):313-318.
[14]VIEIRA E A,FERRANTE M. Prediction of rheological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test[J].Acta Mater,2005, 53(20):5379-5386.
[15]秦晋.铝合金T型件半固态填充——塑性流动一体化模锻研究[D].哈尔滨:哈尔滨工业大学,2010. QIN Jin. Investigation of T-Shaped Workpiece Semi-solid Aluminum Alloy Filling-plastic Flowing in Thixoforging[D]. Harbin: Harbin Institute of Technology, 2010.
[16]GOVENDER G, MLLER H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356[J]. Solid State Phenomena, 2008,141/142/143:433-438.
[17]LIU D,ATKINSON H V,KAPRANOS P, et al. Effect of heat treatment on structure and properties of thixoformed wrought alloy 2024[C]//Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites.Tokyo:[s.n.], 2002: 311-316.
[18]CHO W G, KANG C G. Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys[J]. J Mater Process Technol,2000,105(3): 269-277.
[19]CHARREYRON P O, FLEMINGS M C. Rheology of semi-solid dendritic Sn-Pb alloys at low strain rates[J]. International Journal of Mechanical Sciences, 1985, 27:781-785.
[20]李元东,刘兴海,张心龙,等.变形铝合金半固态近净成形研究进展[J].特种铸造及有色合金,2014,34(5):471-479.
LI Yuandong, LIU Xinghai, ZHANG Xinlong,et al. An review of semi-solid near-net forming in wrought aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2014,34(5):471-479.
[21]李建,孙惠学,郭朋,等.镁合金车轮成形工艺及模具研究[J].燕山大学学报,2013,37(6):494-498.
LI Jian,SUN Huixue,GUO Peng,et al.Development of forming technology and die of magnesium alloy wheels[J].Journal of Yanshan University,2013,37(6):494-498.
关键词:铸造工艺与设备;半固态;流变模锻;7075铝合金;组织均匀性;液相偏析度
中图分类号:TG146.4 文献标志码:A
Abstract:Liquid phase segregation frequently occurs in the process of semi solid die forging, which makes the parts appear "weak point" or "weak region", and usually, the "weak point" or "weak area" is the reason of crack and service condition failure. In order to analyze the influence factors of the liquid phase segregation of the semi solid die forging, DEFORM-3D is used for the numerical simulation of semi-solid die forging forming process of 7075 aluminum alloy, to study the influence rule of forming velocity on the forming process of cup part. Based on the simulation results, the rheological die forging forming of 7075 aluminum alloythe part is conducted to research the influence of forming velocity on the uniformity of microstructure by means of press machine and cup mould. The simulation and experimental results show that as the filling velocity is faster, the forming process is more unstable; under the condition of head temperature of 400 ℃, the forming pressure of 50 MPa, and the alloy temperature 628 ℃, as the forming velocity increases, the liquid phase segregation degree of cup part increases, and the microstructure is far from uniformity. The segregation degree is up to 18.2% as the forming velocity is 5 mm/s.
Keywords:foundry technology and equipment; semisolid; rheological die forging; 7075 aluminum alloy; uniformity of microstructure; liquid phase segregation degree
随着中国交通运输业及武器装备业的现代化、高速化,零件轻量化要求的日趋强烈,特别是飞机、航天器、高速列车、货运车、汽车、火炮、坦克以及机械设备等重要受力部件和结构件等,大量使用铝合金锻件和模锻件来代替原来的钢结构件。普通的铝合金生产方法以及传统的模锻技术难以满足关键零部件的制造需求和使用性能,由于这种需求的客观存在,使得半固态模锻技术得到人们广泛关注[1-7]。然而,半固态合金是含有非枝晶固相的固液混合物,在外力作用下成形时,液相比固相更容易流动因而造成液相偏析。研究表明,许多合金在半固态锻造中出现固液分离导致液相偏析,如A356,A357,2024,6061,6082,7050,7075,2A50,A201,AM60,ADC12等[8-21]。但到目前为止,这个问题还没有彻底解决。本文采用计算机模拟和实验相结合的方法,研究了成形速度对7075铝合金杯形件半固态模锻组织均匀性的影响,定量描述了成形速度与液相偏析之间的关系。
1 热分析模型的建立
1.1 建立模型
本实验中采用的杯形件模型包括压头、垫块、套筒和坯料,Pro/E中实体建模如图1所示。
装配后模具的三维立体示意图如图2所示;图3为部分模具模型网格划分图。
1.2 材料参数设置
实验所用材料为7075合金,其主要成分的质量分数分别为Zn:5.1%~6.1 %;Mg:2.1%~2.9%;Cu: 1.2%~2.0 %;Si:0.40%, Fe:0.50%;Mn:0.30%;Cr:0.18%~0.28%;Ti:0.20%;余量为Al。材料的热物性参数见表1。 1.3 其他参数设置
在模拟运算完成后应用DEF0RM软件中的后处理模块进行分析,设置压头为活动件,其余模具及坯料速度设为零,压头下压速度方向为-Z(垂直向下),压头的下压速度为时间函数。定义本实验中所有模具和坯料间的接触类型全部为黏着,在接触的主次关系中定义坯料均为次要,摩擦类型为剪切摩擦,设定值为0.4。界面换热系数中压头和坯料的换热系数为11,其余为5。
1.4 模拟工艺方案
采用3组不同成形速度进行模拟,模具下模温度设为350 ℃,成形比压为50 MPa,模拟方案见表2。
2 充型过程模拟结果及分析
图4表示的是成形速度对充型过程的影响。
从图4可以看出,当其他工艺参数相同,随着充型速度的增大,7075铝合金半固态合金充型过程变得不平稳。这是由于随着充型速度的提高,半固态合金之间的相对运动变得较为剧烈,导致合金的充型过程不平稳。
3 半固态模锻成形
为了验证模拟结果,进行了半固态模锻实验。实验模具如图5所示。将预先定量切割好的圆柱形试块放入下模中,加热到一定温度后,采用手工机械搅拌的方式制备半固态合金,待到预定温度后,进行半固态模锻成形。成形工艺方案同表1,成形的杯形件断面如图6所示。图6中的c)是由于涂料涂覆不到位,造成杯形件脱模力过大,杯形件由图5中下模具中取出时,由于锤击过猛,导致从下部断裂。
通过对图6杯形件断面观察及金相组织分析,发现高温液相形成的共晶在杯形件的上部,中部、下部不存在高温液相形成的共晶。图6中杯形件断面上部用线圈定的区域为高温液相形成的共晶区域。从图6可以看出,不同成形速度下成形的杯形件,高温液相形成的共晶区域大小也不同,随着成形速度的提高,杯形件上部共晶区域面积逐渐加大。图6 c)的微观组织如图7所示。
为了定量描述半固态合金温度与高温液相形成的共晶区域的关系,引入了液相偏析度的概念:高温液相形成的共晶区域所占面积A液与整个杯形断面总面积A总的比例为液相偏析度,即
液相偏析度=[SX(]A液A总[SX)]×100%。
经分析计算,不同成形速度下的液相偏析度如图8所示。
由图8可以看出,随着成形速度的提高,液相偏析度是逐渐增加的。这是因为随着成形速度的增加,液相的流动速度相对于固相的流动速度也会增加,导致高温下液相明显优于固相流动,导致最后充填部位(杯形件的上部)高温液相形成的共晶区域偏多,充型速度大的杯形件杯口处的共晶区域增多,造成了试件上部和其他部位的组织不均匀。因此,严格控制半固态合金成形速度对成形零件的组织均匀性是非常有利的。另外,成形速度过高,也会造成合金在充型的过程中容易产生紊流、卷气,使零件产生气孔。
4 结 论
1)利用DEFORM-3D软件,模拟了成形速度对7075铝合金杯形件充型过程的影响规律。模拟结果表明:成形速度越高,充型越不平稳。
2)在模拟的基础上,进行了半固态模锻成形,模锻工艺参数在压头预热温度400 ℃、成形比压50 MPa、合金温度628 ℃时,随着成形速度的增加,杯形件的液相偏析度增加,组织越不均匀;当成形速度为5 mm/s时,杯形件的液相偏析度高达18.2%。
参考文献/References:
[1] SEO P K,KIM D U,KANG C G. The effect of the gate shape on the microstructural characteristic of the grain size of Al-Si alloy in the semi-solid die casting process[J].Mater Sci Eng A,2007, 445/446:20-30.
[2] 陈刚.2A50铝合金半固态模锻成形的组织性能不均匀性研究[D].哈尔滨:哈尔滨工业大学,2009.
CHEN Gang. Research on Inhomogeneity of Microstructure and Mechanical Properties for 2A50 Aluminum Alloy Prepared by Thixoforging[D]. Harbin: Harbin Institute of Technology, 2009.
[3] DU Z M,CHEN G,CHENG Y S, et al. Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state[J]. Transactions of Nonferrous Metals Society of China,2011(10):2285-2293.
[4] 谭建波,杨帅,李祎超.半固态6061合金流变铸-锻成形及组织均匀性[J].特种铸造及有色合金, 2015,35(6): 561-565.
TAN Jianbo, YANG Shuai, LI Yichao. Research on forming process and microstructure uniformity of semi-solid rheological casting-forging 6061 alloy[J]. Special Casting & Nonferrous Alloys, 2015,35(6): 561-565.
[5] 钱福梅.2024铝合金半固态触变模锻过程研究及数值模拟[D].哈尔滨:哈尔滨工业大学, 2011. QIAN Fumei. Research on the Semi-solid Thixoforging Process and Numerical Simulation of Aluminum Alloy 2024[D]. Harbin: Harbin Institute of Technology, 2011.
[6] 刘静安. 铝合金锻压生产现状及锻件应用前景分析[J]. 轻合金加工技术, 2005,33(6):1-5.
LIU Jingan. Application foreground of forgings and states of aluminium alloy forging production[J]. Light Alloy Fabrication Technology, 2005,33(6):1-5.
[7] 王顺成, 戚文军,郑开宏.半固态模锻ZL101铝合金车轮的组织与力学性能[J]. 材料热处理学报, 2013,34(5):116-120.
WANG Shuncheng, QI Wenjun, ZHENG Kaihong. Microstructure and mechanical properties of semisolid forged ZL101 aluminum alloy wheel[J]. Transactions of Materials and Heat Treatment, 2013,34(5):116-120.
[8] MLLER H, CURLE U A, MASUKU E P. Characterization of surface liquid segregation in SSM-HPDC aluminium alloys 7075,2024,6082 and A201[J].Transactions of Nonferrous Metals Society of China,2010,20(3):847-851.
[9] 肖文华.半固态5083铝合金压缩行为及触变轧制研究[D].广州:华南理工大学,2011.
XIAO Wenhua. Study on Compression Behavior and Thixo-rolling of Semi-solid 5083 Aluminum Alloy[D]. Guangzhou: South China University of Technology,2011.
[10]闫冬, 纪兴华, 陈文, 等.近液相线锻造及部分重熔制备AM60镁合金半固态坯及触变成形研究[J].铸造,2014,63(5):429-431.
YAN Dong, JI Xinghua, CHEN Wen, et al. Study on thixoforging of AM60 magnesium alloy semi-solid billet prepared by near-liquidus forging and partial remelting[J]. Foundry,2014,63(5):429-431.
[11]谭建波,杨帅,李祎超.工艺参数对半固态流变铸-锻6061合金成形性的影响[J]. 河北科技大学学报, 2016,37(1):65-69.
TAN Jianbo, YANG Shuai, LI Yichao. Effect of technological parameters on formability of semi-solid rheological casting-forging 6061 alloy[J]. Journal of Hebei University of Science and Technology, 2016,37(1):65-69.
[12]KANG C G, LEE S M. The effect of solid fraction and indirect forging pressure on mechanical properties of wrought aluminum alloy fabricated by electromagnetic stirring[J]. International Journal of Advanced Manufacturing Technology, 2009,42:73-82.
[13]谭建波,王子超,王东旭.杯形件半固态模锻充型过程模拟及实验验证[J].河北科技大学学报,2015, 36(3):313-318.
TAN Jianbo, WANG Zichao, WANG Dongxu.The simulation and verification of the filling process of cup shell semi-solid die forging[J].Journal of Hebei University of Science and Technology,2015, 36(3):313-318.
[14]VIEIRA E A,FERRANTE M. Prediction of rheological behaviour and segregation susceptibility of semi-solid aluminium-silicon alloys by a simple back extrusion test[J].Acta Mater,2005, 53(20):5379-5386.
[15]秦晋.铝合金T型件半固态填充——塑性流动一体化模锻研究[D].哈尔滨:哈尔滨工业大学,2010. QIN Jin. Investigation of T-Shaped Workpiece Semi-solid Aluminum Alloy Filling-plastic Flowing in Thixoforging[D]. Harbin: Harbin Institute of Technology, 2010.
[16]GOVENDER G, MLLER H. Evaluation of surface chemical segregation of semi-solid metal cast aluminium alloy A356[J]. Solid State Phenomena, 2008,141/142/143:433-438.
[17]LIU D,ATKINSON H V,KAPRANOS P, et al. Effect of heat treatment on structure and properties of thixoformed wrought alloy 2024[C]//Proceedings of the 7th International Conference on Semi-Solid Processing of Alloys and Composites.Tokyo:[s.n.], 2002: 311-316.
[18]CHO W G, KANG C G. Mechanical properties and their microstructure evaluation in the thixoforming process of semi-solid aluminum alloys[J]. J Mater Process Technol,2000,105(3): 269-277.
[19]CHARREYRON P O, FLEMINGS M C. Rheology of semi-solid dendritic Sn-Pb alloys at low strain rates[J]. International Journal of Mechanical Sciences, 1985, 27:781-785.
[20]李元东,刘兴海,张心龙,等.变形铝合金半固态近净成形研究进展[J].特种铸造及有色合金,2014,34(5):471-479.
LI Yuandong, LIU Xinghai, ZHANG Xinlong,et al. An review of semi-solid near-net forming in wrought aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2014,34(5):471-479.
[21]李建,孙惠学,郭朋,等.镁合金车轮成形工艺及模具研究[J].燕山大学学报,2013,37(6):494-498.
LI Jian,SUN Huixue,GUO Peng,et al.Development of forming technology and die of magnesium alloy wheels[J].Journal of Yanshan University,2013,37(6):494-498.