【摘 要】
:
为提高立体匹配算法的效果和稳定性,提出了一种基于色调(H)、饱和度(S)和明度(V)颜色空间的自适应聚合区域的引导滤波算法。结合图片的结构和纹理信息,通过颜色和横向梯度的相互作用计算初始匹配代价。在HSV颜色空间中运用颜色和距离信息计算每一点的自适应支撑臂长,解决了图片中红、绿、蓝3种颜色变化趋势相近导致无法有效反映图片信息的问题。自适应聚合区域利用中心点纵向臂上各点的横向臂进行构造,采用引导滤波
【机 构】
:
天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室
论文部分内容阅读
为提高立体匹配算法的效果和稳定性,提出了一种基于色调(H)、饱和度(S)和明度(V)颜色空间的自适应聚合区域的引导滤波算法。结合图片的结构和纹理信息,通过颜色和横向梯度的相互作用计算初始匹配代价。在HSV颜色空间中运用颜色和距离信息计算每一点的自适应支撑臂长,解决了图片中红、绿、蓝3种颜色变化趋势相近导致无法有效反映图片信息的问题。自适应聚合区域利用中心点纵向臂上各点的横向臂进行构造,采用引导滤波的方法在自适应聚合区域内聚合代价空间。为避免中心点邻域信息波动造成支撑窗口过小的问题,设置了臂长的最小范
其他文献
利用紧束缚近似下的本征方程方法寻找二维量子点的等离激元。结果表明,电荷可能在横向或纵向分别呈现单极、偶极或四极极化,可能局域于量子点的边界、端点或中心处;根据电荷
根据高光谱遥感图像数据维度高、空间相关性、特征非线性的特点,提出了一种基于深度学习的空-谱特征提取分类算法。首先在堆栈稀疏自动编码机中加入权重衰减项,再利用主成分
针对实时、大词汇集、连续的手语视频高效准确地识别,提出了一种基于压缩感知与加速稳健特征(SURF)的手语关键帧提取算法。利用压缩感知将手语视频降维成低维多尺度帧图像特征,通过自适应阈值完成子镜头分割,以处理大量的手语帧数据;运用SURF特征点完成特征匹配,绘制其间的相似度曲线进而提取关键帧。在前期预处理阶段,采用基于HSV空间自适应颜色检测提取手势区域。实验验证,由本文算法提取到的关键帧具有较高的
研究了光源附近微区的漫反射率RΦ与收集孔径Φ、约化散射系数μ′s和散射相函数相关的参数γ之间的关系。根据不同的生物组织,选取不同的散射相函数,采用Monte Carlo模拟方
复杂结构件内部零件装配正确性检测是工业产品检测必不可少的流程之一,但目前仍缺少一种系统稳健性较高的检测方法以完善整个检测流程。针对这个问题,综合计算机断层扫描(CT)检测技术与卷积神经网络分类识别算法,改变以往以连通区域为特征的检测方法,自动识别图像中的感兴趣区域,使合格品的判断标准由区域特征变为个体特征。将CT系统采集的投影数据序列输入卷积神经网络,对工件内部零件进行精确定位并分类,以产品内部零
1.7μm波段光纤光源在生物成像、激光医疗、特殊材料加工、有机物微量测量、中红外激光产生等领域有着巨大应用前景,已成为国内外的研究热点。总结了国内外1.7μm光纤光源的研究
通过分析特征点密度与物点聚焦程度的关系,建立基于特征点密度的聚焦测度。将融合特征点密度与边缘信息建立新的聚焦测度,利用聚焦堆栈数据实现场景深度的估计与全聚焦成像。对于由边缘信息建立的聚焦测度在图像纹理区域存在不准确性,该方法可以有效地弥补这一缺点。将刻画边缘信息的Sum-Modified-Laplacian(SML)方法与特征点密度函数相融合建立新的聚焦测度,用于三维场景重构,实现了场景深度估计和
对不同光谱分布的发光二极管(LED)引起的不舒适眩光进行了研究。设计开发了红/绿/蓝/白(R/G/B/W)4色LED光源模块,研究了该模块在3种不同背景亮度下的眩光效应,并在每种条件下
针对吸收马尔可夫随机游走方法未能充分抑制显著图的中心背景区域和丢失位于图像边界的显著目标的问题,提出一种基于流形正则化随机游走的图像显著性检测方法。首先以超像素作为节点对输入图像构造全局图,通过吸收马尔可夫链随机游走算法计算得到初始显著图,再对初始显著图利用自适应阈值分割获得稳健前景查询节点。其次,为有效利用图像全局信息和局部信息的互补性,构建局部正则图以获得局部最优相似度矩阵。最后,将获得的局部
传统随机抽样一致性(RANSAC)算法只能进行粗配准,且配准效率低。针对该问题提出一种改进的RANSAC快速点云配准算法。该算法将内部形态描述子算法和快速点特征直方图(FPFH)算法相结合,得到特征描述子,然后采用预估计和三维栅格分割法改进RANSAC算法,最后与传统配准算法采样一致性初始配准算法进行比较。实验结果表明,本文算法能快速精确地剔除误匹配点,进行仿射变换矩阵求解,无需二次配准。本文算法