论文部分内容阅读
随机森林(random forest,RF)算法虽应用广泛且分类准确度很高,但在面对特征维度高且不平衡的数据时,算法分类性能被严重削弱。高维数据通常包含大量的无关和冗余的特征,针对这个问题,结合权重排序和递归特征筛选的思想提出了一种改进的随机森林算法RW_RF(ReliefF&wrapper random forest)。首先引用ReliefF算法对数据集的所有特征按正负类分类能力赋予不同的权值,再递归地删除冗余的低权值特征,得到分类性能最佳的特征子集来构造随机森林;同时改进ReliefF的抽样方