论文部分内容阅读
随机计算是一种特殊的基于概率数据码流的数学计算方法,其优点在于可以采用非常简单的数字逻辑完成复杂数学运算,从而大幅降低硬件实现成本。该文首先讨论了随机计算的基本原理和主要运算逻辑,论述了传统线性状态机的不足,并分析了一种2维状态转移拓扑结构,推导了通过2维有限状态机实现高斯函数的方法。在此基础上,提出一种随机径向基函数神经网络模型,其硬件实现成本非常低,而性能与传统神经网络相当。两类模式识别实验结果显示,所提出的随机径向基函数神经网络的输出值均方误差与相应结构传统神经网络的差别小于1.3%。FPGA实验结