论文部分内容阅读
在经典卷积神经网络模型(Convolution Neural Network,CNN)——Le Net-5的基础上,针对经典模型无法有效进行单细胞图像分类、Faraki M,Nosaka R等人的分类方法需要复杂的特征提取,并且普遍只针对完整单细胞图像,并未考虑图像残缺时的分类等问题,提出了基于同层多尺度核CNN进行单细胞图像分类的方法 ,使用ICPR2012 HEp-2数据集进行计算机仿真实验测试;仿真实验测试结果表明,同层多尺度核CNN模型具有较高的分类正确率,鲁棒性更好,对于旋转、残缺、对比度