论文部分内容阅读
针对刚体卫星的姿态控制问题,设计了不存在和存在扰动力矩两种条件下的有限时间状态反馈控制律.对于无扰动力矩情形,基于非线性齐次系统性质,设计了一种便于工程实践性的连续、非奇异的比例微分形式控制算法,保证姿态闭环系统有限时间收敛到零点,而且此算法能直接推广到卫星姿态跟踪问题.对于存在扰动力矩的情形,基于有限时间Lyapunov定理设计的连续、非奇异的控制力矩保证卫星姿态和角速度在有限时间内收敛到原点附近的邻域.当外扰力矩为零时,此控制律使闭环系统状态有限时间收敛到平衡点.数学仿真结果说明了提出的控制算法有效.
In order to solve the attitude control problem of rigid body satellites, a finite time state feedback control law is designed under both non-existent and disturbing torques. For the case of undisturbed moment, based on the property of nonlinear homogeneous system, , The algorithm of continuous and non-singular proportional and differential form control is proposed to ensure that the closed-loop system converges to zero for a finite time, and this algorithm can be directly extended to the satellite attitude tracking problem.For the case of disturbance torque, based on the finite, time-dependent Lyapunov theorem, The non-singular control moment ensures that the satellite attitude and angular velocity converge to a neighborhood near the origin in a finite time. When the disturbance torque is zero, the control law converges the closed-loop state to equilibrium point for a finite time. The mathematical simulation results show that The control algorithm is valid.