论文部分内容阅读
【摘要】以函数的一致连续性分析为研究切入点,结合实例将函数连续、一致连续二者区别所在,分析函数一致连续性的几何意义,包括有限区间、无限区间的一致连续性函数判定,通过讨论得出一致连续函数判定的方法,可以为更多同学能够快速对一致连续函数概念知识点的理解提供参考.
【关键词】数学分析函数;一致连续性;实例
数学分析作为一门需要学习中抽象理解的学科,具有较强的逻辑思维性与严密性,通过运用简单明了的数学语言,对用冗长的文学语言也无法定量描述的事物发展过程进行准确表达.所以了解几何意义,作为数学分析课程的入门引导,能够帮助我们理解抽象的数学概念,也可以帮助我们在数学学习中发散思维.本文将结合自身所学,对函数的一致连续性相关问题展开探讨.
一、连续概念引出一致连续
一致连续是基于函数连续概念派生所获,主要指的是对于微小变化界限中,假若函数定义域内部的任何两点间距离都不会超出该界限,那么两点之间的对应函数值产生的差值,就可以达到任意小点.函数一致连续性作为函数具备的重要基本特征,表示了一个連续函数变化速度是否发生“突变”.在数学问题中针对函数一致连续性来讲,不仅要求对于每一个区间函数都能够保持连续一点,还要求所属区间点临近大体呈均匀变化.用数学语言表达就是说针对一个任意给出的正数ε,要求存在x个无关的正数δ,只要x和δ二者之间距离条件满足x′-x″
【关键词】数学分析函数;一致连续性;实例
数学分析作为一门需要学习中抽象理解的学科,具有较强的逻辑思维性与严密性,通过运用简单明了的数学语言,对用冗长的文学语言也无法定量描述的事物发展过程进行准确表达.所以了解几何意义,作为数学分析课程的入门引导,能够帮助我们理解抽象的数学概念,也可以帮助我们在数学学习中发散思维.本文将结合自身所学,对函数的一致连续性相关问题展开探讨.
一、连续概念引出一致连续
一致连续是基于函数连续概念派生所获,主要指的是对于微小变化界限中,假若函数定义域内部的任何两点间距离都不会超出该界限,那么两点之间的对应函数值产生的差值,就可以达到任意小点.函数一致连续性作为函数具备的重要基本特征,表示了一个連续函数变化速度是否发生“突变”.在数学问题中针对函数一致连续性来讲,不仅要求对于每一个区间函数都能够保持连续一点,还要求所属区间点临近大体呈均匀变化.用数学语言表达就是说针对一个任意给出的正数ε,要求存在x个无关的正数δ,只要x和δ二者之间距离条件满足x′-x″