论文部分内容阅读
In this investigation, a novel thermally coupled reactor (TCR) containing methyl formate (MF) production in the endothermic side and methanol synthesis in the exothermic side has been investigated. The interesting feature of this TCR is that productive methanol in the exothermic side could be recycled and used as feed of endothermic side for MF synthesis. Other important advantages of the proposed system are high production rates of hydrogen and MF. The configuration consists of two thermally coupled concentric tubular reactors. In these coupled reactors, autothermal system is obtained within the reactor. A steady-state heterogeneous model is used for simulation of the coupled reactor. The proposed model has been utilized to compare the performance of TCR with the conventional methanol reactor (CMR). Noticeable enhancement can be obtained in the performance of the reactors. The influence of operational parameters is studied on reactor performance. The results show that coupling of these reactions could be feasible and beneficial. Experimental proof-of-concept is required to validate the operation of the novel reactor.
In this investigation, a novel thermally coupled reactor (TCR) containing methyl formate (MF) production in the endothermic side and methanol synthesis in the exothermic side has been investigated. The interesting feature of this TCR is that productive methanol in the exothermic side could be Recycled and used as feed of endothermic side for MF synthesis. Other important advantages of the proposed system are high production rates of hydrogen and MF. The configuration consists of two thermally coupled concentric tubular reactors. reactor. A steady-state heterogeneous model is used for simulation of the coupled reactor. The proposed model has been utilized to compare the performance of TCR with the conventional methanol reactor (CMR). Noticeable enhancement can be obtained in the performance of the reactors. The influence of operational parameters is studied on reactor performance. The results show that coupling of thes e reactions could be feasible and beneficial. Experimental proof-of-concept is required to validate the operation of the novel reactor.