论文部分内容阅读
The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Nd(S_2CNEt_2)_4] by chemical and elemental analyses and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2[Nd (S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.
The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N 2 atmosphere. The title complex was identified as Et_2NH_2 [Nd (S_2CNEt_2) _4] by chemical and elemental analyzes and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2 [Nd (S_2CNEt_2) _4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction a t 298.15 K was calculated by a thermochemical cycle.