【摘 要】
:
目前配电变压器仿真建模及雷电防护措施研究均基于Yyn?0型配电变压器,未考虑工程中大量应用的Dyn?11型配电变压器与其在雷电耐受能力上的差异.针对Dyn?11型配电变压器雷电耐受能力研究缺失问题,基于两台不同接线组别的S13?315/10真型配电变压器的结构及标称参数,采用ATP?EMTP建立宽频等效模型,分析雷电防护措施相同的情况下及接地电阻改变时,接线组别的不同对配电变压器雷电耐受性能的影响.研究结果表明,在相同雷电防护措施下,Dyn?11型配电变压器高压绕组承受的过电压均低于Yyn?0型,Dyn?
【机 构】
:
山东理工大学 电气与电子工程学院,山东 淄博 255000;山东耐高电力器材有限公司,山东 淄博 255000
论文部分内容阅读
目前配电变压器仿真建模及雷电防护措施研究均基于Yyn?0型配电变压器,未考虑工程中大量应用的Dyn?11型配电变压器与其在雷电耐受能力上的差异.针对Dyn?11型配电变压器雷电耐受能力研究缺失问题,基于两台不同接线组别的S13?315/10真型配电变压器的结构及标称参数,采用ATP?EMTP建立宽频等效模型,分析雷电防护措施相同的情况下及接地电阻改变时,接线组别的不同对配电变压器雷电耐受性能的影响.研究结果表明,在相同雷电防护措施下,Dyn?11型配电变压器高压绕组承受的过电压均低于Yyn?0型,Dyn?11型配电变压器雷电耐受能力优于Yyn?0型,且Yyn?0型配电变压器承受的感应雷过电压对于接地电阻的阻值变化更为敏感.
其他文献
传统的公交行程时间预测模型由于忽略了历史时刻中的信息,导致预测精度不理想.针对公交行程时间的时序性,提出一种基于LSTM神经网络的预测模型,并引入注意力(Attention)机制对其进行优化.首先,综合考虑多种影响因素,设计了多变量LSTM模块,将当前时刻的行程时间与历史时刻数据相关联,对其中的多维度特征进行信息提取;随后针对单一LSTM网络无法自动识别不同信息重要性的局限性,引入Attention机制,使模型聚焦重点信息、忽略冗杂信息;最后,采用实际公交GPS数据验证了该方法的有效性.实验结果表明,与五
智能制造背景下,机械设备趋于复杂庞大,海量、多源、高维度、非结构的工业数据给系统管理监测带来更大难度,设备的故障诊断与预测更显重要.传统故障诊断与预测方法难以建立准确的数据模型,在设备故障诊断预测应用方面受到很大局限,深度学习以其强大的自主学习非线性数据表示和模式识别的能力在许多领域都有重大突破,在工业设备的故障诊断与预测领域也得到广泛关注.文中对四类经典的深度学习模型:深度置信网络、卷积神经网络、自动编码器及其变体、循环神经网络的网络结构和模型思想作详细介绍,阐述并总结了这四类深度学习模型在故障诊断与预
针对传统气温预测方法预测难度大、精度差及气象数据大而带来的计算量大等问题,提出一种基于主成分分析(PCA)和改进粒子群算法优化门控循环单元(GRU)的递归神经网络时间序列预测模型.首先,利用主成分分析算法对气象要素进行降维处理;然后,运用指数下降惯性权重和边界突变算子的改进粒子群算法(PSO)优化GRU神经网络.以南京地面观测站点的观测数据为样本数据,运用Python对模型进行训练,与传统的BP及LSTM神经网络预测模型对比,实验结果表明该模型具有更高的预测精度和稳定性.
针对基于直线轨道的固定翼无人机中继能效问题,文中提出一种无人机变加速飞行方案.该方案假设无人机飞行在固定高度且有足够大的数据缓冲区,通过联合优化时分双工无人机中继的收发时间分配及飞行加速度,实现对中继系统的能效最大化.对于无法直接求解的联合优化非凸问题,首先利用分步优化方法,分别对收发时间分配函数和无人机加速度进行优化.对于收发时间分配函数优化问题,将其转化为线性规划问题直接求解;对于加速度优化问题,取其目标函数的下界,将非凸目标函数转化为凸函数,并提出一种连续凸逼近的迭代算法对其进行求解.实验仿真分析了
在桥梁建成后,桥梁的安全、稳定运行离不开日常的管理与养护,传统的人工管养方式费时费力且效果不佳,以知识库和推理机为基础的专家系统,可大幅度地提高桥梁管养的有效性和高效性.以赣江特大桥监测系统为应用背景,针对实时监测和人工巡检数据,设计和开发了一套基于Jess的桥梁智能决策专家管养系统.该系统根据现行的桥梁管养规范和桥梁管养专家的经验建立专家系统的事实库与规则库,以CLIP文件描述桥梁各种病害及应采取的治理维修措施,系统根据输入的桥梁病害描述进行推理,并自动化输出相应的桥梁病害养护、维修和治理措施.实践表明
学生成绩数据的分析与挖掘对于教学管理有重要意义,文中提出一种基于自适应差分进化算法优化BP神经网络的学生成绩等级预测模型.以学生各门课程成绩为研究对象,在选定目标课程作为模型输出的基础上,采用相关分析法确定与该门课程成绩相关性较高的科目成绩作为模型输入,建立BP神经网络模型进行成绩预测.针对神经网络收敛速度慢、效果差等不足,采用自适应差分进化算法对神经网络的权值阈值进行优化,以学院某一个年级的183条有效学生成绩数据进行实例验证,并与遗传算法优化神经网络的方法进行比较.结果表明,自适应差分进化算法优化BP
针对航空发动机轴上的测试电子设备在发动机舱内高温环境下的散热需求,文中设计一种外部隔热和内部吸热相结合的热控制结构来满足电子设备的正常工作需求,确保电子设备在250℃的高温环境中能持续工作60 min,且电子器件的表面温度不超过规定使用的最高温度.相比其他的散热结构,外部隔热结合内部相变的防护结构具有不依赖于环境温度、成本低、结构简单、可随设备一同旋转的优点.采用热仿真软件ANSYS对隔热结构和相变结构建立模型、设定边界条件、添加材料热物理性能参数,然后进行数值模拟.软件仿真结果表明,文中所设计的热防护结
负荷预测是电力系统调度运行的重要基础数据,短期负荷预测的样本数据既有波动性也有随机性.群体优化算法尤其是粒子群算法在负荷预测中运用非常广泛,但常规粒子群算法的惯性参数一般是固定不变的,导致后期搜索效率下降.文中采用改进的自适应粒子群算法提高搜索效率:首先用混沌初始化替代原来的随机初始化,避免了初始种群分布不均;再根据每次迭代适应度的变化更新惯性因子,可以解决后期寻优速度下降的问题;通过差分变异将适应度较差的粒子进行变异,提高了较差个体更新效率;最后利用改进后的自适应粒子群算法优化支持向量机的关键参数c和g
采用机器学习中卷积神经网络的方式对获得的心电图数据进行学习,提取心电图数据中的特征因素进行分析建模,利用建立好的预测模型对患者的心电图数据进行分析,根据分析得到的结果判断患者是否患有心脏病,然后进一步给出患者具体的心脏病类型.利用深度残差卷积神经网络算法进行模型的建立以及模型训练,在模型训练的过程中,对批处理脚本大小、卷积核大小、池化窗口大小等进行进一步的最优化预测,以期得到较好的训练模型,最终根据训练好的模型得出实验结果.实验结果显示该系统能够在保证较高的准确率的情况下,利用心电图数据实现对心脏病患者的
考虑到现有微电网一致性多目标调度没有考虑柔性负荷的参与,且存在收敛速度较慢的不足.不同于传统的一致性算法,文中基于有向通信,采用快速一致性算法解决含柔性负荷参与的综合考虑环保与经济的微电网多目标调度问题.首先,综合考虑发电机发电成本、污染气体排放、储能成本、柔性负荷用电效益及传输损耗,对多目标调度问题建立系统且全面的数学模型;其次,利用线性加权将建立的多目标问题转化为单目标问题,采用拉格朗日法求得目标函数的最优解;最后,采用引入的领导?跟随快速一致性算法实现了多目标模型的最优调度.仿真结果表明,该策略在保