论文部分内容阅读
设N是有限群G的一个正规子群,γ:G→G是自然满同态以及γ:RG→RG是由γ经过线性扩张得到的一个R-代数满同态,其中R是一个代数整数环。首先证明了γ在Z(RG)上限制,仍是Z(RG)到Z(RG)之间的代数同态。进一步,确定了RG中的类和在γ下的像,同时给出了RG中的类和与RG中的类和之间的一个对应。最后,作为这个对应的应用,得到了有限群G的共轭类与N的陪集之间一个数量关系。