基于分解的高维多目标改进进化算法

来源 :计算机应用 | 被引量 : 0次 | 上传用户:shendongshendong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对基于参考向量的高维多目标进化算法中随机选择父代个体会降低算法的收敛速度,以及部分参考向量分配个体的缺失会减弱种群多样性的问题,提出了一种基于分解的高维多目标改进优化算法(IMaOEA/D).首先,在分解策略框架下,当一个参考向量至少分配了2个个体时,对该参考向量分配的个体根据其到理想点的距离选择父代个体来繁殖子代,从而提高搜索速度.然后,针对未能分配到至少2个个体的参考向量,则从所有个体中选择沿该参考向量和理想点距离最小的点,使得该参考向量至少有2个个体与其相关.同时,确保环境选择后每个参考向量有一个个体与其相关,从而保证种群的多样性.在10个和15个目标的MaF测试问题集上将所提算法与其他4个基于分解的高维多目标优化算法进行了测试对比,实验结果表明所提算法对于高维多目标优化问题具有较好的寻优能力,且该算法在30个测试问题中的14个测试问题上得到的优化结果均优于其他4个对比算法,特别是对于退化问题具有一定的寻优优势.
其他文献
分析在计算机专业开展课程思政的紧迫性和并行程序设计课程的重要性,提出该课程线上线下混合的教学方式,梳理该课程的思政目标,最后论述两个教学设计案例,介绍线上方式和探究式教学法在可重入函数教学中的应用,以及线下方式和试错教学法在缓存一致性与伪共享教学中的应用.
基于工程教育认证背景下的计算机类专业实践教学环节改革发展趋势,以Python程序设计课程如何培养学生解决复杂工程问题的能力入手,明晰Python课程设计对毕业要求指标点的支撑作用,提出Python程序设计课程设计内容设置实施方案,给出课程设计的考核方式,总结课程设计中出现的问题并提出解决办法.
针对工业4.0背景下企业对高校人才培养的新要求,为缩短高校教育与企业用人需求之间的差距,从学生能力评价的角度,基于工程教育认证思想,凝练出学生能力评价指标,提出一种科学有效的毕业生就业能力量化评价方法并介绍如何实践应用,以帮助学校相关部门和学生更好地提升学习效果并促进持续改进.
心律失常是心血管疾病中常见的病症之一,实现心律失常的自动分类对心血管疾病的诊治具有重要意义.基于一维心电信号的心律失常分类方法以若干节拍作为输入,通过模型提取特征并用于分类.针对现有方法预处理时间成本高以及未按医疗仪器促进协会(AAMI)标准分类等问题,提出了一种基于原始一维心电信号并按照AAMI推荐标准类别进行心律失常自动分类的方法.该方法首先利用卷积神经网络(CNN)学习心电信号的形态特征,之后通过双向长短期记忆网络(BLSTM)获取特征中的上下文依赖关系,最后借助softmax函数完成分类任务.方法
在新工科背景下,针对网络安全课程更新困难、综合性不足、课时有限的问题,提出虚拟化、多融合、渐进式的网络安全课程综合实验的设计思路与方法,并依据该方法介绍软件定义网络(SDN)框架下Web安全智能防御实验设计过程.
针对高职院校计算机应用基础课程教学存在的问题,提出一种结合SPOC和聚类分析的分层教学模式,从教学对象、教学内容、教学环节和教学评价方面阐述如何基于SPOC和聚类进行分层教学设计,介绍具体教学实践情况,通过实验班和对比班教学实践对比,说明教学模式的有效性.
遗传算法(GA)的全局搜索能力强,易于操作,但收敛速度慢,易陷入局部极值.为克服上述缺陷,首先对算法初始化方法进行改进,采用海明距离作为聚类划分的相似性度量提出了一种均匀分区多种群初始化方法.该方法以相似性度量为准则划分出不同集合的聚类中心点,然后以偏好随机的方式产生多个不同的种群,避免算法因种群初始个体在解空间分布不够均匀而陷入局部收敛.其次在遗传算法中引入多种群并行机制和学习机制来提高算法的性能,通过对已有研究中两种机制在遗传算法中的作用进行分析,指出各自的优势和不足,分别对两种机制进行改进,提出改进
《计算机体系结构(第2 版)》(ISBN:9787302406372)荣获首届全国教材建设奖全国优秀教材(高等教育类)一等奖,第1 版和第2 版先后被评为普通高等教育“十一五”国家级规划教材和“十二五”普通高等教育本科国家级规划教材.
期刊
多视图子空间聚类方法因其可以揭示数据内在的低维结构而被广泛关注,但大多数现有的多视图子空间聚类算法直接将多个来自原始数据的充满噪声的相似度矩阵进行融合,并且通常是在得到一致的多视图表示之后再使用K均值算法聚类得到最终的结果,这种将表示的学习过程和后续的聚类过程分离的两阶段算法会导致无法得到最优的聚类结果.为了解决这些问题,提出一种单步划分融合多视图子空间聚类算法.该算法不是直接融合具有噪声和冗余信息的相似度矩阵,而是从相似度矩阵中提取出更具有判别性信息的划分级信息进行融合.提出一个新的框架,将表示学习、多
函数型聚类分析是探索函数型数据的重要工具,现有的函数型聚类方法大多属于无监督学习,没有考虑到数据的标签信息.针对目前函数型聚类方法的无监督特性,以及函数型数据通常具备的非负性特征,提出了一种非负半监督函数型聚类方法(SSNFC),用于处理带有少量标签信息的非负函数型数据的聚类问题.首先,通过引入约束非负矩阵分解(CNMF)技术,将标签信息融入函数型聚类过程中,构建了曲线拟合、非负约束和函数型聚类相统一的一步法模型.其次,给出了模型的迭代更新求解算法,证明了算法的局部收敛性,并分析了算法的时间复杂度.最后,