论文部分内容阅读
明确激波在Laval喷管内的发生位置,能够为设计及优化Laval喷管线型提供理论依据,从而提高Laval喷管的制冷性能和整个天然气超音速分离器的分离效率。文中对Laval喷管进行了结构设计,对不同背压条件下Laval喷管内激波位置进行了理论分析与计算,并利用FLUENT软件进行了数值模拟,通过研究不同背压条件下Laval喷管内气体马赫数、压力和温度分布,对喷管制冷性能进行了对比分析。结果表明:保持Laval喷管入口压力不变,随出口背压增大,激波位置逐渐从喷管出口向喷管入口方向移动,气体受到激波的影响,在喷管所能达到的最大马赫数不断降低,所能产生的最低温度不断上升,喷管的制冷性能越差;理论计算与数值模拟结果基本一致,数值模拟验证了理论计算的正确性。
Clarifying the location of the shock within the Laval nozzle provides a rationale for the design and optimization of Laval nozzle profiles, improving the cooling performance of the Laval nozzle and the efficiency of the separation of the entire natural gas supersonic separator. In this paper, Laval nozzle is structurally designed. The shock wave position in Laval nozzle under different backpressure conditions is theoretically analyzed and calculated. The FLUENT software is used to conduct numerical simulation. The gas Mach Laval under different backpressure conditions Number, pressure and temperature distribution of the nozzle cooling performance were analyzed. The results show that keeping the inlet pressure of Laval nozzle unchanged, with the increase of outlet backpressure, the shock position gradually moves from the nozzle outlet to the nozzle inlet. The gas is affected by the shock wave. When the nozzle reaches the maximum Mach The number of continuous lowers, the lowest temperature that can be produced, and the worse the cooling performance of the nozzle. The theoretical calculation and the numerical simulation results are basically the same, and the numerical simulation verifies the correctness of the theoretical calculation.