论文部分内容阅读
如何在保护数据隐私的同时进行可用性的数据挖掘已成为热点问题。鉴于在很多实际应用场景中,很难找到一个真正可信的第三方对用户的敏感数据进行处理,文中首次提出了一种支持本地化差分隐私技术的聚类方案——LDPK-modes(Local Differential Privacy K-modes)。与传统的基于中心化差分隐私的聚类算法相比,其不再需要一个可信的第三方对数据进行收集和处理,而由用户担任数据隐私化的工作,极大地降低了第三方窃取用户隐私的可能性。用户使用满足本地d-隐私(带有距离度量的本地差分隐私技术)定义