推荐算法研究进展

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:HUYA123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网的发展,全球数据量爆炸式增长,信息过载现象严重,如何获取用户真正关注的信息成为困扰人们的难题之一.在此背景下,推荐算法在各个领域得到了广泛应用.本文首先介绍了目前主流推荐算法的分类方法和主要评价指标.其次,分别介绍了当前各类推荐算法的研究进展,其中包括传统推荐算法的基础推荐原理和研究进展以及神经网络在推荐算法中的研究应用,对其进行归纳总结.同时分析了数据稀疏性、冷启动和可伸缩性等推荐算法常见问题.最后,提出了现有推荐算法的不足以及在应用中遇到的部分问题,介绍了未来推荐算法的研究热点.
其他文献
基于面部视觉特征的抑郁症诊断方法借助计算机视觉技术,通过分析被试的面部肌肉和眼球相关运动特征来辅助抑郁症的早期检测.与目前临床上通常采用的医生访谈方式相比,基于面部视觉特征的抑郁症诊断法具有被试无须与外人外物交流接触且客观高效、普及性强与成本低的显著优点,可极大缓解医生患者比例不足、误诊率偏高现状,拥有广阔应用前景.本文从抑郁症患者的面部行为特点入手,综合介绍了目前常用的诱发实验范式、现有面部视觉特征公开数据库及基于面部视觉特征的抑郁症诊断的最新研究成果,最后简要讨论了存在问题与发展动向.
针对现有5G系统主同步信号同步算法在大频偏情况下的同步性能较差的问题,本文提出一种基于快速傅里叶变换(Fast Fourier Transform,FFT)的联合检测算法,通过对传统互相关算法中的共轭相乘结果进行FFT变换,记录变换后的峰值,遍历所有峰值找到同步点,得出小区组内号,再进行载波频偏的估计.仿真结果及复杂度分析表明,改进算法不仅具有很强的抗频偏能力,尤其对于大频偏下的情况,同时完成载波频偏的估计,所增加复杂度在可接受范围内且检测性能稳定.