论文部分内容阅读
独立分量分析(ICA)是基于信号高阶统计量的盲源分离方法,在高阶统计量方法中,由于高斯信号的高阶累计量为零,所以系统存在加性高斯噪声时就难以处理。提出了一种基于curvelet阈值去噪和FastICA算法的含噪信号盲分离的方法,并对高斯噪声环境下的混合图像进行了盲分离的仿真。结果表明,该方法能很好地解决由于存在加性高斯噪声而导致经典ICA算法性能发生严重恶化的问题;同时将curvelet变换去噪应用于含噪图像的盲源分离中,可以提高混合图像的信噪比,相对于小波去噪后的ICA算法,其分离性能有很大改善。