论文部分内容阅读
探讨图像融合技术在肝包虫病分型中的应用。对正常肝脏、单囊型肝包虫病、肝囊肿CT图像感兴趣区域分别使用传统的预处理和图像融合方法,对融合后的和预处理后的图像提取Tamura和灰度-梯度共生矩阵特征,通过支持向量机和BP神经网络分类模型进行分类,比较两种方法的分类准确率,并对各分类模型进行参数评估。传统预处理方法对肝囊肿CT图像Tamura和混合特征的分类效果优于图像融合方法,最佳分类准确率为98.333%;图像融合方法对单囊型肝包虫病和正常肝脏CT图像不同特征下的分类准确率均高于传统预处理方法,最佳分类准确