论文部分内容阅读
针对标准遗传算法应用于数值优化时存在收敛缓慢、易早熟收敛及收敛精度低的问题,提出了一种改进的遗传算法,对标准算法的交叉算子进行了改进——加入了引向因子,使参与交叉的个体向着最佳个体靠近,同时,还加强了群体之间的信息共享机制,使交叉运算中个体搜索方向受到更多个体的影响,使得算法不易陷入局部收敛。并将反向搜索技术结合到上述改进遗传算法之中,增加了算法探索新的解空间的能力,从而提高算法的全局搜索能力,改善了全局解的精度。最后,使用改进后的算法对5组典型的复杂测试函数进行优化,将优化结果与标准算法优化结果进