论文部分内容阅读
针对粒子群优化算法容易陷入局部极值点以及进化后期收敛慢和优化精度较差等缺点,提出一种改进的自适应进化算法.该算法引入信息扩散函数,根据不同粒子的位置及对应适应值与当前群体最佳位置和最佳适应值的关系,控制粒子变尺度向群体当前最佳位置移动;基于多样性反馈机制动态调节惯性权值和控制粒子群的微变异.通过复杂基准函数的仿真优化结果表明,改进算法具有抑制早熟、收敛速度快、求解精度高的特点.