论文部分内容阅读
在不计测量误差情况下,神经网络能够成功地识别损伤位置及其程度,但在测量噪声影响下,神经网络的损伤识别效果则比较差,考虑到基于多变量模式分类的概率神经网络具有处理受噪声污染的测试数据的能力,本文将可能的损伤位置作为模式类,利用概率神经网络的分类能力来识别结构的损,地对两个算例,一个六层框架和一个两层框架进行数值模拟分析,并将概率神经网络与BP网络进行了比较,结果表明,概率神经网络具有更好的识别效果,是一种很有潜力的结构损伤位置识别方法。