论文部分内容阅读
针对无线传感器网络实际环境的非线性模型目标跟踪问题,提出一种改进的粒子滤波跟踪算法。首先用模糊C-均值算法确定量测的目标归属,对同一目标的量测进行线性融合,然后用采样重要重采样粒子滤波估计目标位置。仿真结果表明:在非线性模型下,所提出算法与扩展卡尔曼滤波相比,目标估计位置的均方根误差从0.689 5m显著减小到0.370 3m。