论文部分内容阅读
为了准确预测交通流量,提出了一种基于改进型支持向量机算法的短时交通流量预测方法。支持向量机对训练样本进行学习后,可以形成影响因素与影响结果之间的最优函数,进而根据实时交通状态对交通流量进行非线性回归预测。为了提高预测精度,使用QPSO算法优化了支持向量机的参数,并进行了滤波处理以减小模型误差。仿真结果显示,实际预测误差小于10%。