论文部分内容阅读
为了解决传统的Hopfield神经网络图像复原算法对噪声抑制和图像细节保护不能很好兼顾的问题,提出了一种基于改进的连续Hopfield神经网络和小波域隐Markov树(HMT)模型的复原算法。将小波域HMT模型作为图像小波系数统计关系的先验知识,并以正则化项的形式引入到神经网络模型中,最终利用Hopfield神经网络的能量收敛特性完成图像复原。同时提出了一种高度并行的网络权值矩阵计算方法,通过对模板图像进行算子操作,分批求取网络权值,避免了大型矩阵的乘法运算。实验结果表明,无论是对真实图像还是人工生