论文部分内容阅读
以下是2011年辽宁的一道高考题.已知函数f(x)=lnx-ax2+(2-a)x.(1)(2)略;(3)若函数y=f(x)的图象与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:f’(x0)<0.本题考察了形如f(x)=plnx+mx2+nx+c(p,m,n,c∈R)的导数题型.对导数问题,高考重点考查两方面内容:(1)函数的单调
The following is a Liaoning college entrance examination in 2011. Known function f (x) = lnx-ax2 + (2-a) x (1) (2) omitted; (3) If the function y = f And the intersection of the x axis and the two points A and B, the abscissa of the midpoint of the line segment AB is x0, which proves that: f ’(x0) <0. This paper examines the form of f (x) = plnx + mx2 + nx + c , m, n, c∈R) .There are two aspects to the derivative problem and the key points of the college entrance examination: (1) The monotony of the function