论文部分内容阅读
复杂网络中最具影响力节点的识别对网络动力学如加速信息的扩散或抑制流言的传播都具有重要影响意义。为了对节点影响力给出具体排序,在已有的各种最具影响力节点识别方法的基础上,提出了一种基于社团结构和k-shell节点法的节点影响力识别方法。其基本思想是利用某个节点处于不同社团的邻居节点的ks值判断节点影响力(称为Nc值),以识别ks值相同的节点的不同影响力。通过单感染源传染的SIR模型进行仿真,发现Nc值较高的节点不仅最终节点的影响范围较大,传播速度也快于其他节点。