论文部分内容阅读
为过滤入侵检测系统报警数据中的误报警,根据报警的根源性和时间性总结出了区分真报警和误报警的19个相关属性,并提出了一种基于粗糙集-支持向量机理论的过滤误报警的方法。该方法首先采用粗糙集理论去除相关属性中的冗余属性,然后将具有约简后的10个属性的报警数据集上的误报警过滤问题转化为分类问题,采用支持向量机理论构造分类器以过滤误报警。实验采用由网络入侵检测器Snort监控美国国防部高级研究计划局1999年入侵评测数据(DARPA99)产生的报警数据,结果表明提出的方法在漏报警约增加1.6%的代价下,可过滤