论文部分内容阅读
为了解决卷积神经网络结构复杂,样本训练神经网络时间过长的问题,本文提出了采用分数阶理论优化卷积神经网络中的节点函数,使Sigmoid函数的收敛速度加快,在不影响卷积神经网络进行音频识别的正确率的前提下,减少了训练所需时间,达到提高整个神经网络的训练效率的目的。实验结果表明,在保证正确率的前提下该方法有效的减少了训练所花的时间,并可广泛应用于虚拟人运动控制系统中。