论文部分内容阅读
提出了基于SMA方法解决人脸与非人脸的校验问题.该方法首先运用主分量分析PCA(Principal Component Analysis)方法降低特征向量的维数,然后运用神经网络原理,采用径向基函数RBF(Radial Basis Function)前向神经网络,运用SMA算法得到人脸、非人脸的软间隔判决函数.这种方法允许在样本训练过程中有错误分类,从而更具推广性,且得到的判决函数更加简单,进而使实时处理系统效率更高.实验表明,该方法对图象中含有较多噪声点或者明显附属物的人脸、非人脸图象正确率较高.