论文部分内容阅读
基于流形正则化框架提出一种分类算法(MLD-RLSC),以解决高维文档分类问题。该算法通过构建训练样本的最近邻图来估计数据空间的几何结构并将其作为流形正则化项,结合多变量线性回归获得高维文档的低维流形结构,并采用k近邻分类器对低维流形进行分类,得到针对多类问题的分类器。该算法能够充分利用训练样本的类别信息来帮助学习以提取有效特征。通过在Reuters-21578数据集上的实验,证明该算法的分类性能和运行速度比传统分类器有较大的提高。