论文部分内容阅读
恶意代码的编写者通常采用自动化的手段开发恶意代码变种,使得恶意代码的数量呈现迅猛增长的态势。由于自动化的方式会重复利用恶意代码中的核心模块,因此也为病毒研究人员辨识和区分恶意代码族提供了有利依据。借鉴灰度图的思想,利用K-Nearest Neighbor(KNN)分类算法,给出了一种新的研究恶意代码谱系分类的可视化方法。其基本思想是,通过将二进制文件转换成双色通道的位图和像素归一图,从可视化的角度标识恶意样本特性,以此实现恶意代码族的相似度比较及分类。实验结果表明采用了像素归一化的降维映射机制能显著地减小