论文部分内容阅读
对3类常见正交基函数的稀疏变换即离散余弦转换(DCT)、离散小波变换(DWT)、奇异值分解(SVD)进行研究,在构建基函数的基本稀疏表示的模型基础上,以灰度图像受到高斯噪声干扰为例,建立了3类含高斯噪声的稀疏变换模型;利用MATLAB中的块操作实现对图像的稀疏分解,得到图像完整的稀疏特征矩阵,过滤其中的表现为高斯噪声的高频分量,通过稀疏反变换模型重构代表图像最主要结构的低频分量,最终获得去噪图像。结果表明,DWT算法的综合去噪性能最优,SVD算法在低标准偏差下去噪图像画面质量最高,而DCT算法则在高