论文部分内容阅读
文中将深度置信回声状态网络应用于网络流量预测。结构上,深度置信网络通过无监督的方式进行特征学习,有效地提取网络流量数据特征。然后,利用回声状态网络学习机制代替传统的反向传播方法进行局部权值调整,实现有监督的储备池学习。针对实际的网络流量数据集,仿真结果表明该模型在非线性逼近能力方面明显优于浅层的神经网络结构,同时能够有效地保持网络流量的自相似特性。