论文部分内容阅读
煤矿设备出现故障时,设备温度会迅速上升,表现出非线性和非平稳性的特点。为了较准确地预测温度异常,采用了基于经验模态分解(EMD)的神经网络方法对设备温度进行预测。该方法首先采用经验模态分解算法对设备温度时间序列进行分解,得到若干个平稳性较好的本征模态函数(IMF)分量和一个剩余量。然后分别对各分量及剩余量进行神经网络预测。仿真结果表明,基于EMD的神经网络预测方法比单一神经网络预测方法,预测精度更高,对于温度异常预测更有效。