论文部分内容阅读
针对铁路货运量与其影响因素间的复杂非线性关系,建立自适应粒子群最小二乘支持向量机(APSO-LSSVM)模型用于铁路货运量预测研究,利用最小二乘支持向量机的优良特性预测铁路货运量,并采用自适应粒子群算法优化选择LSSVM的参数。通过对我国铁路货运量的实例分析检验APSO-LSSVM模型的预测性能。结果表明,APSO-LSSVM模型有效地预测了我国铁路货运量,具有较高的预测精度及较快的收敛速度。