论文部分内容阅读
We propose a novel waveguide design of polarization-maintaining few mode fiber(PM-FMF) supporting ≥10non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure endows a new degree of freedom to adjust the birefringence of all the guided modes, including the fundamental polarization mode. Numerical simulations demonstrate that, by optimizing the air hole and elliptical-ring core,a PM-FMF supporting 10 distinctive polarization modes has been achieved, and the effective index difference Δn_(eff) between the adjacent guided modes could be kept larger than 1.32 × 10~(-4) over the whole C +L band. The proposed fiber structure can flexibly tailored to support an even larger number of modes in PM-FMF(14-mode PM-FMF has been demonstrated as an example), which can be readily applicable to a scalable mode division multiplexing system.
We propose a novel waveguide design of polarization-maintaining few mode fiber (PM-FMF) supporting ≥ 10 non-degenerate modes, utilizing a central circular air hole and a circumjacent elliptical-ring core. The structure endows a new degree of freedom to adjust the birefringence of all the guided modes, including the fundamental polarization mode. Numerical simulations demonstrate that, by optimizing the air hole and elliptical-ring core, a PM-FMF supporting 10 distinctive polarization modes has been achieved, and the effective index difference Δn_ (eff ) between the adjacent guided modes could be kept larger than 1.32 × 10 ~ (-4) over the whole C + L band. The proposed fiber structure can flexibly tailored to support an even larger number of modes in PM-FMF (14-mode PM-FMF has been demonstrated as an example), which can be readily applicable to a scalable mode division multiplexing system.