论文部分内容阅读
场景图像分类是计算机视觉领域中的一个基本问题.提出一种基于内容相关性的场景图像分类方法.首先从图像上提取视觉单词,并把图像表示成视觉单词的词频矢量;然后利用产生式模型来学习训练集合中包含的主题,和每一幅图像所包含的相关主题;最后用判定式分类器进行多类学习.提出的方法利用logistic正态分布对主题的相关性进行建模,使得学习得到的类别的主题分布更准确.并且在学习过程中不需要对图像内容进行人工标注.还提出了一种新的局部区域描述方法,它结合了局部区域的梯度信息和彩色信息.在自然场景图像集合和人造场景图像