论文部分内容阅读
面对复杂信息环境下的数据预处理需求,提出了一种可以处理混合属性数据集的双重聚类方法。这种双重聚类方法由双重近邻无向图的构造算法或其改进算法,基于分离集合并的双重近邻图聚类算法、基于宽度优先搜索的双重近邻图聚类算法、或基于深度优先搜索的双重近邻图聚类算法来实现。通过人工数据集和UCI标准数据集的仿真实验,可以验证,尽管这三个聚类算法所采用的搜索策略不同,但最终的结果是一致的。仿真实验结果还表明,对于一些具有明显聚类分布结构且无近邻噪声干扰的数据集,该方法经常能取得比Kmeans算法和AP算法更好的聚类精度