论文部分内容阅读
为提高复杂场景下基于关键点的平面物体跟踪算法的鲁棒性,提出一种融合光流的平面物体跟踪算法。检测目标物体与输入图像的关键点及其对应描述符,由最近邻匹配方法构建目标与图像间关键点匹配集合,通过光流法构建相邻两张图像间关键点的对应关系,将已构建的关键点匹配集合与基于光流的对应关系通过加权平均的策略进行融合,得出修正的关键点匹配集合,根据关键点匹配估计目标物体在当前图像的单应性变换矩阵,从而完成目标跟踪。在POT数据集上的实验结果表明,与SIFT、FERNS等算法相比,在校正误差阈值为5时,该算法在所有图像