论文部分内容阅读
针对一类二阶线性波动方程,首先根据时空紧算子构造了一类新的紧差分格式,证明了差分格式解的存在性和唯一性;其次,利用Fourier分析法得到建立的紧差分格式的条件稳定性;再次,利用Lax定理和相容性条件证明数值格式的收敛性,收敛阶在L~∞范数下为O(τ~4+h~4)。数值计算的结果验证了理论结果。