论文部分内容阅读
针对传统神经网络收敛速度慢,收敛精度低,以及用于模式识别泛化能力差的问题。提出了将量子神经网络与小波理论相结合的量子小波神经网络模型。该模型隐层量子神经元采用小波基函数的线性叠加作为激励函数,称之为多层小波激励函数,这样隐层神经元既能表示更多的状态和量级,又能提高网络收敛精度和速度。给出了网络学习算法。并以之在漏钢预报波形识别中的应用验证了该模型和学习算法的有效性。