论文部分内容阅读
为实现对粘连细胞图像的分割,将Bayes分类器和KNN分类器引入到水平集外部速度函数的设计中,两种分类器轮流作用,无需设定阈值便能产生水平集驱动力.算法将Shi模型的双链表和C-V模型的全局分割相结合,以加快曲线演化.将目标与背景的类内平均距离引入到OTSU阈值法的阈值选择函数中,对OTSU法进行了改进.试验结果表明,相较于水平集法和阈值法,该算法对复杂粘连细胞的分割效果更好,在细胞图像分割中具备一定的有效性和可行性.