基于复合混沌序列的图像加密方法

来源 :计算机应用研究 | 被引量 : 7次 | 上传用户:maming5201ww
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对低维度混沌系统的密钥空间小、加密系统安全性较低的不足。提出一种由sine混沌改变均匀分布logistic混沌排列次序形成复合混沌序列的图像加密方法。首先,产生服从均匀分布的logistic混沌序列,用sine混沌序列重排该序列整数化后的重复部分,以此无重复数值的复合混沌序列进行像素位置置乱;之后,由于仅进行位置置乱不能改变图像的灰度统计直方图特征,用sine混沌重排整个logistic混沌序列形成复合混沌序列,以此进行像素扩散完成图像加密。对方法安全性从密钥空间、密钥敏感性、差分分析、统计直方图
其他文献
现代畜牧业在实际放牧中依靠定位设备对牲畜进行管理。为了从牧区牲畜海量日常移动轨迹中挖掘出潜在的有用价值,提出一种新的基于轨迹速度扰动划分与聚类方法。该方法首先将连续定位轨迹以所设速度阈值进行划分;然后以聚类方法将所划分轨迹数据进行地理位置聚类,识别出牲畜不同生活区域。为处理海量数据,以云计算进行数据挖掘。最后为展示各区域不同强度,以核密度分析法对不同轨迹聚类区域进行可视化。理论与实验表明,提出的方
传统的机器学习方法是在训练数据和测试数据分布一致的前提下进行的,但在一些现实世界中的应用中,训练数据和测试数据是来自不同领域的。在不考虑数据分布的情况下,传统的机器学习算法可能会失效。针对这一问题,提出一种基于模糊C-均值(FCM)的文本迁移学习算法。通过简单分类器对测试样本分类,利用自然邻算法构建样本初始模糊隶属度,再利用FCM算法通过迭代更新样本模糊隶属度,修正样本标签,对样本孤立点进行处理,
针对已有的零水印算法鲁棒性差、安全性低的问题进行了研究,提出了一种基于超混沌的图像零水印算法,首先利用Chen三维超混沌系统对水印信息进行加密预处理,通过解析各个位平面在分解后对图像的影响,将载体图像中的最低有效位初始化为零;采用块均值二值量化的方法进行特性提取;最后通过对加密水印与Anorld置乱后的特征矩阵进行异或处理得到零水印。仿真攻击实验及与以往零水印算法对比表明,该算法在保持鲁棒性良好的
推断数据间存在的因果关系是很多科学领域中的一个基础问题,然而现在暂时还没有快速有效的方法对缺失数据进行因果推断。为此,提出一种基于加性噪声模型下适应缺失数据的因果推断算法。该算法是基于加性噪声模型下利用最大似然估计法结合加权样本修复数据的思想构造以似然函数形式的模型评分函数,并以此度量模型相对于缺失数据集的优劣程度,通过迭代学习确定因果方向,每次迭代学习包括使用参数修复数据和在修复后的完整数据集下
针对动态环境下有方向约束航迹规划问题,提出一种结合引导点的动态航迹规划方法。该方法沿约束方向基于圆拓展的方式产生引导点,并自主选择代价最小的引导点,引导航迹规划算法向引导点区域搜索,提高了规划效率。仿真结果表明,改进算法可以适应动态变化的环境,也能满足从特定方向接近目标点的航迹规划要求。相比于传统D*算法,改进算法的航迹总代价更小、规划时间更短。
针对高维混沌复杂系统的多步预测问题,提出了一种基于邻近相点聚类分析的多变量局域多步预测模型。首先对于多变量邻近相点的选取,结合邻近相点多步回溯后的演化规律和变量间的关联信息对演化轨迹的影响,提出了一种新的多变量演化轨迹相似度综合判据;然后针对选取全局最优邻近相点耗时长的缺点,提出了一种基于邻近相点聚类分析的新方案来降低多步预测时间,提高预测效率。最后通过Lorenz混沌数据仿真实验,表明该模型具有
基于电子信息类部分企业专利合作申请的数据构建了加权合作网络,针对加权合作网络中边权值分布和点强度分布呈现的厚尾效应和幂率特征的问题,通过对网络的动态演化结构参数和统计特征进行分析构建了一种新的加权合作网络模型。从理论分析和数值仿真实验两方面对该模型进行了分析和研究,证明了该模型的科学性,实验结果出现了与现实网络一样的厚尾和幂律特征。结合现实网络给出了电子信息类的部分企业合作现状及其原因分析,为该行
针对线性尺度空间水印算法嵌入水印位置定位不够精确,嵌入强度参数选取随机,提出一种非线性尺度空间自适应均衡水印算法。利用KAZE算法提取并筛选出非线性尺度空间稳定性强的特征点,构建嵌入水印区域;将水印图像奇异值分解,构造新矩阵作为待嵌入水印载体,通过调整果蝇优化算法的适应度函数计算嵌入强度,结合DWT-SVD算法自适应完成嵌入水印过程。对受到攻击的水印图像提取特征点,合成特征区域矩阵,使用嵌入水印的
网络广告效果研究中评定广告质量的指标不够准确,广告配置科学性有待提高。提出观测度的概念,将它作为衡量广告质量的新标准,并结合多种信息源对广告记忆度、兴趣度进行建模。实验结果表明,相比普遍使用显示反馈和广告自身特征,融合眼动特征来预测广告的观测程度准确性有所提高。此外,对搜索引擎结果页上位置不同、相关性不同的广告效果进行了定量分析。实验结果表明,用户的注意力受位置影响显著,广告的相关性在主体上方对注
针对传统社会网络链接预测算法忽视节点多维属性的问题,提出一种基于多维属性的社会网络链接预测算法MDA-TF。该算法首先经过数据预处理,结合节点的多维属性,构建张量模型;然后采用高阶正交迭代算法进行张量分解,得到核心矩阵和因子矩阵;最后根据核心矩阵生成链接预测结果。采用真实的社会网络数据集进行测试取得了较好的实验结果,实验结果也表明了该算法的有效性和正确性。