论文部分内容阅读
采用马氏体钢(18Cr2Ni4WA)和奥氏体钢(1Cr18Ni9Ti)研究了低温形变淬火马氏体(或奥氏体)的室温硬度(强度的表征)与形变温度下奥氏体的流变应力间的关系。形变方式为扭转变形,形变温度为723~923K,形变速率为2.5×10~(-3)~2.6×10~(-1)S~(-1),形变量为0~160%,形变后立即喷水冷却。结果表明,形变奥氏体的室温硬度增量ΔHV~γ只单值地决定于形变时奥氏体的流变应力增量Δσ~γ(即加工硬化量)。低温形变淬火马氏体的室温硬度增量ΔHV~α′决定于Δσ~γ和Z(Zener-Hollomon参数),当Δσ~γ相同时,ΔHV~α′随形变温度的增高(即随Z参数的降低)而增大。此外,如果形变温度不变时,在Δσ~γ较小的范围内,Δσ~γ对ΔHV~α′的贡献小,而在Δσ~γ比较大的范围内,Δσ~γ对ΔHV~α′的贡献大。另外,奥氏体中的位错胞状结构对低温形变淬火马氏体的强化非常有效,而奥氏体中的均匀分布(混乱堆集)位错对低温形变淬火马氏体的强化作用则较小。
The martensitic (18Cr2Ni4WA) and austenitic (1Cr18Ni9Ti) martensitic (1Cr18Ni9Ti) martensitic (or austenitic) martensitic (or austenitic) at room temperature hardness (characterization of the strength) and deformation temperature austenite rheological stress Relationship. The deformation mode is torsional deformation, the deformation temperature is 723-923K, the deformation rate is 2.5 × 10 -3 ~ 2.6 × 10 -1 S -1, the deformation amount is 0-160% Immediately spray water cooling. The results show that the increment ΔHV ~ γ of room temperature hardness of deformed austenite only depends on the increment of Δσ ~ γ (ie, work hardening) of the flow stress of austenite during deformation. ΔHV ~ α ’is determined by Δσ ~ γ and Z (Zener-Hollomon parameters). When Δσ ~ γ are the same, ΔHV ~ α’ increases with the deformation temperature Decrease). In addition, when the deformation temperature is constant, Δσ to γ have a small contribution to ΔHV to α ’within a range of small Δσ to γ, and Δσ to γ have a small contribution to ΔHV to α’ within a relatively large range of Δσ to γ, Great contribution. In addition, the dislocation cell structure in austenite is very effective in the strengthening of low-temperature deformation-quenching martensite, while the uniform distribution of dislocation in the austenite (confounding stacking) dislocation enhances the strengthening effect of low-temperature deformation quenching martensite .